An Assessment of Habitat Value of Constructed Intertidal Oyster Reefs and Oyster Aquaculture Systems in Delaware Bay, USA

Jaclyn Taylor and David Bushek Rutgers University Haskin Shellfish Research Laboratory, Port Norris, NJ 08349

THE STATE UNIVERSITY OF NEW JERSEY

Oyster Reef Ecology

{|||

Oysters build reefs

- > create a unique habitat
 - increase biodiversity
 - nursery grounds
 - refuge from predation
 - foraging sites

Intertidal Oyster Reefs in Delaware Bay

{|||

Why Don't Intertidal Oyster Reefs Persist in Delaware Bay?

North Aller C

Preliminary Study Summer 2006

- Three shellbag reefs
 1-layer (Reef 1)
 2-layer (Reef 2)
 3-layer (Reef 3)
- Monitored oyster recruitment & mortality
- Examined reef persistence thru winter

Summer 2006 Oyster Recruitment

Over-Winter Survival 2007

High mortality on Reef 1 due to sedimentationReef height necessary for reef persistence

What do they attract?

Oyster Aquaculture at Cape Shore

New activity on the tidal flats

 Π

- Rack and bag system creates structure
- Are these structures functionally equivalent to oyster reef habitat?

2007 Habitat Comparisons

- 6 replicate 2-layer shellbag reefs (1.5 m x 3 m)
- 6 control sand plots
- 6 aquaculture racks

Do intertidal reef and aquaculture habitats support increased motile macrofuana diversity, abundance and biomass?

Are constructed shellbag reefs and aquaculture racks comparable habitat for motile fauna?

Motile Fauna Trap Sampling

Treatments: Reefs Racks Sand

18 eel pots18 minnow traps6 crab pots

{|||

Randomized block design to ensure all sampled simultaneously

Oyster Recruitment & Mortality

High recruitment Low early mortality

Common Name	Species Name	Sand	Reef	Aquaculture
Grass shrimp	Palaemonetes pugio	541	1890	3534
Eastern mud snail	Nassarius obsoletus	117	869	840
Longwrist hermit crab	Pagurus longicarpus	235	867	658
Blue crab	Callinectes sapidus	60	53	58
Sand shrimp	Crangon septemspinosa	70	30	33
American eel	Anguilla rostrata	2	15	42
Atl horseshoe crab	Limulus polyphemus	13	16	1
Silver Perch	Bairdiella chrysoura	1	2	17
Estuarine mud crab	Rhithropanopeus harrisii	3	12	4
Striped Cusk-eel	Ophidion marginatum	5	3	2
Atl silverside	Menidia menidia	3	6	7
Flatback mud crab	Eurypanopeus depressus	3	10	1
Atl mud crab	Panopeus herbstii	2	2	2
Smallmouth flounder	Etropus microstomus	3	1	
Striped Bass	Morone saxatilis	1	1	
Atl Croaker	Micropogonias undulatus	1	3	
Asian shore crab	Hemigrapsus sanguineus	1		
Naked goby	Gobiosoma bosc		6	5
Oyster toadfish	Opsanus tau		2	1
Pinfish	Lagondon rhomboides		2	2
Green crab	Carcinus maenas		1	1
Summer flounder	Paralichthys dentatus		1	1
Black Sea Bass	Centropristis striata		1	\land
Alewife	Alosa pseudoharengus			2
Bay anchovy	Anchoa mitchilli			2
Gray snapper	Lutjanus griseus			1
Spot	Leiostomus xanthurus			1
Striped killifish	Fundulus majalis			1
Weakfish	Cynoscion regalis			\ 1 /
White Perch	Morone americana			1
	Species Richness	17	22	25

Species Abundance and Biomass

Species Composition PCA

- PCA 99% of species composition variation
- PC1 95%

Linear regression with PC1 scores and habitat relative depth

Γ	ī	ī	ī
	l	l	
-	-	-	-

Common Name	Species Name	Sand	Reef	Aquaculture
Grass shrimp	Palaemonetes pugio	541	1890	3534
Eastern mud snail	Nassarius obsoletus	117	869	840
Longwrist hermit crab	Pagurus longicarpus	235	867	658
Blue crab	Callinectes sapidus	60	53	58
Sand shrimp	Crangon septemspinosa	70	30	33
American eel	Anguilla rostrata	2	15	42

- Important commercial fishery species
- Complex life history
- Yellow-phase eels in estuaries 2-20 years
- Are American eels a resident species utilizing oyster reefs and aquaculture racks as habitat?

American Eel Mark-Recapture

- 52 eels marked
 Aquaculture > Reef > Sand
- 7 eels recaptured

- •1 recaptured 2x
- •13% recapture rate
- no preference
 - n = 4 Aquaculture
 - n = 3 Reef

Conclusions

- Constructed reefs and aquaculture racks support increased species richness, abundance and biomass compared to sand flats.
- Rack and bag oyster culture increased species richness of motile fauna by increasing habitat diversity.
- Oyster aquaculture structures are at least functionally equivalent habitat as intertidal oyster reefs.
- Species composition is influenced by both habitat type and relative depth.
- Mark-recapture results show Anguilla rostrata is a resident reef/rack species.

Acknowledgements

Special thanks to:

Greg Debrosse Fernando Fuentes **Emily Scarpa** Iris Burt

Sean Boyd Jeff Pydeski Tom Evans **Emma Green-Beach**

And to: James Tweed of Atlantic Capes Fisheries for allowing us to sample on their oyster farm.

Funding:

New Jersey Water Resources Research Institute Graduate Student Grant-in-Aid The Rutgers University Graduate Program in Ecology and Evolution Academic **Excellence** Fund ear **Rutgers University Research Council Grant** into the Dupont Clear Into the Future Fellowship Future

