Appendix Section 12
USGS National Assessment of Shoreline Change 2010-1118
National Assessment of Shoreline Change: Historical Shoreline Change along the New England and Mid-Atlantic Coasts

Open-File Report 2010–1118

U.S. Department of the Interior
U.S. Geological Survey
National Assessment of Shoreline Change: Historical Shoreline Change along the New England and Mid-Atlantic Coasts

by Cheryl J. Hapke, Emily A. Himmelstoss, Meredith G. Kratzmann, Jeffrey H. Lst, and E. Robert Thieler

Open-File Report 2010-1118

U.S. Department of the Interior
U.S. Geological Survey
Contents

Executive Summary ... 1
Introduction ... 2
 U.S. Geological Survey National Assessment of Shoreline Change Project 2
The Role of State and Federal Governments ... 2
Prior New England And Mid-Atlantic Coast Shoreline Assessments 4
Methods Of Analyzing Shoreline Change ... 4
 Compilation of Shoreline Position ... 4
 High Water Line (HWL) Shoreline ... 4
 Lidar-Derived Mean High Water (MHW) Shoreline .. 6
The Proxy-Datum Bias Correction between HWL and MHW Shorelines 9
 Uncertainty in the Proxy-Datum Bias .. 11
 Use of the Proxy-Datum Bias and Bias Uncertainty in Shoreline Change Analysis 11
Estimation of Shoreline Position Uncertainty ... 11
 HWL Shoreline Position Uncertainty ... 12
 Lidar-Derived MHW Shoreline Position Uncertainty .. 12
Calculation and Interpretation of Shoreline Change Rates .. 13
 End-Point Rates (Short-Term) ... 15
 Linear Regression Rates (Long-Term) ... 15
Estimation of Shoreline Change Rate Uncertainty ... 16
 Rate Uncertainty at Individual Transects ... 16
 Regionally Averaged Rate Uncertainty .. 16
Human Beach Alterations that Influence Rates of Change .. 17
Geology and Geomorphology of the New England and Mid-Atlantic Coast 17
 General Geologic Setting ... 17
Coastal Processes ... 19
Sea-Level Rise .. 21
Sediment Sources and Transport ... 22
Landforms of the New England and Mid-Atlantic Coasts .. 24
 Coastal Landforms of New England ... 24
 Coastal Landforms of the Mid-Atlantic ... 24
Estuaries and Lagoons in the New England and Mid-Atlantic Areas 24
History of Infrastructure Development ... 25
Historical Shoreline Change Analysis ... 26
New England: Maine to Rhode Island .. 30
 1: New England North Region .. 33
 2: Greater Boston Region .. 35
 3: Cape Cod Region .. 37
 4: Massachusetts Islands Region .. 39
 5: New England South Region .. 41
Mid-Atlantic: New York to Virginia .. 41
 6: Long Island Region ... 43
Figures

1. Index map of New England and the Mid-Atlantic showing the 10 analysis regions used in this study... 3
2. Graphs showing an example of a lidar profile from Island Beach State Park in New Jersey... 8
3. Schematic diagrams showing examples of common conditions where transects are eliminated in the absence of four shoreline intersections................. 15
4. Oblique aerial photograph showing an extensive groin field at Beach Haven, NJ... 18
5. Map of the (a) New England and (b) Mid-Atlantic coasts showing the geomorphic provinces and the general distribution of coastal landforms........ 19
6. Map showing the Last Glacial Maximum extent of the Laurentide ice sheet in New England... 20
7. Graphs showing sea-level rise curves for the last (a) 160,000 years and (b) 24,000 years on the East Coast of the United States................................. 21
8. Graphs showing long-term (100-year) trends in average annual sea level at selected tide gages in New England and the Mid-Atlantic....................... 23
9. Oblique aerial photographs showing the various geomorphic shore types along the New England and Mid-Atlantic coasts... 25
10. Schematic diagram showing common coastal landforms of New England and the Mid-Atlantic.. 26
11. Index map of (a) New England and (b) the Mid-Atlantic showing geographic names discussed in this report... 30-31
12. Graphs showing long- and short-term shoreline change rates for the New England North region... 32
14. Graphs showing long- and short-term shoreline change rates for the Greater Boston region... 34
15. Oblique aerial photographs of (a) Brace Cove, MA, looking west, with the city of Gloucester in the background; and (b) Duxbury Beach, MA, a popular tourist beach south of Boston, looking south, in the Greater Boston region............... 35
16. Graphs showing long- and short-term shoreline change rates for the Cape Cod region.. 36
17. Oblique aerial photograph of Monomoy Island, MA.. 37
18. Graphs showing long- and short-term shoreline change rates for the Massachusetts Islands region ... 38
19. Oblique aerial photograph of Madaket Inlet and Esther Island in the Massachusetts Islands region ... 39
20. Graphs showing long- and short-term shoreline change rates for the New England South region ... 40
21. Oblique aerial photographs of locations in the New England South region ... 41
22. Graphs showing long- and short-term shoreline change rates for the Long Island region ... 42
23. Oblique aerial photograph looking east along Jones Beach, NY ... 43
24. Graphs showing long- and short-term shoreline change rates for the New Jersey North region ... 44
25. Oblique aerial photograph looking west along Long Branch, NJ ... 45
26. Graphs showing long- and short-term shoreline change rates for the New Jersey South region ... 46
27. Oblique aerial photograph at Brigantine Inlet, looking south toward Atlantic City, NJ ... 47
28. Graphs showing long- and short-term shoreline change rates for the Delmarva North region ... 48
29. Oblique aerial photograph of Ocean City Inlet in the Delmarva North region ... 49
30. Graphs showing long- and short-term shoreline change rates for the Delmarva South/Southern Virginia region ... 50
31. Oblique aerial photograph looking southwest along the southern end of Cedar Island in the Delmarva South/Southern Virginia region ... 51

Tables

1. Providers and original sources of historical shorelines for each New England and Mid-Atlantic (NEMA) region ... 5
2. Shorelines used to calculate short- and long-term change rates of the (a) New England region and (b) Mid-Atlantic region ... 6-7
3. List of tide-gage measurements used to calculate mean high water (MHW) elevation ... 9
4. Absolute horizontal and vertical differences between High Water Line (HWL) and Mean High Water Line (MHWL) shorelines ... 10
5. Average uncertainties for the New England and Mid-Atlantic shorelines ... 13
6. Long-term (a) and short-term (b) shoreline change rate uncertainties for New England and Mid-Atlantic regional averages ... 14
7. Summary of major tropical and extratropical storms impacting the New England and Mid-Atlantic coasts since 1900 ... 22
8. Relative distribution of geomorphic shore-types along the New England and Mid-Atlantic coasts ... 27
9. Average long-term (a) and short-term (b) shoreline change rates for the New England and Mid-Atlantic (NEMA) coasts ... 28
10. Maximum shoreline change rates for the (a) New England and (b) Mid-Atlantic coast ... 29
Executive Summary

Beach erosion is a chronic problem along many open-ocean shores of the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information regarding past and present trends and rates of shoreline movement. There is also a need for a comprehensive analysis of shoreline movement that is consistent from one coastal region to another. To meet these national needs, the U.S. Geological Survey (USGS) is conducting an analysis of historical shoreline changes along open-ocean sandy shores of the conterminous United States and parts of Hawaii, Alaska, and the Great Lakes. One purpose of this work is to develop standard, repeatable methods for mapping and analyzing shoreline movement so that periodic, systematic, internally consistent updates regarding coastal erosion and land loss can be made nationally. In the case of this study, the shoreline is the interpreted boundary between the ocean water surface and the sandy beach.

This report on the New England and Mid-Atlantic coasts is the fifth in a series of reports on historical shoreline change. Previous investigations include analyses and descriptive reports of the Gulf of Mexico (Morton and others, 2004), the Southeast Atlantic (Morton and Miller, 2005), and, for California, the sandy shoreline (Hapke and others, 2006) and the coastal cliffs (Hapke and Reid, 2007). This report, like the earlier reports, summarizes the methods of analysis, interprets the results, provides explanations regarding long-term and short-term trends and rates of change, and describes how different coastal communities are responding to coastal erosion. This report differs from the earlier USGS reports in the series in that the previous shoreline change analyses incorporated only four total shorelines to represent specific time periods. The New England and Mid-Atlantic assessment incorporates all shorelines that are available and can be quality-checked. Shoreline change evaluations are based on a comparison of historical shoreline positions digitized from maps or aerial photographic data sources with recent shorelines, at least one of which is derived from lidar (light detection and ranging) surveys. The historical shorelines cover a variety of time periods ranging from the 1800s through the 2000s, whereas the lidar shoreline is from either 1997 or 2000. Long-term rates of change are calculated using all shorelines and short-term rates of change are calculated using the lidar shoreline and the historical shoreline that will produce an assessment for a 25- to 30-year time period. The rates of change presented in this report represent conditions up to the date of the most recent shoreline data and therefore are not intended for predicting future shoreline positions or rates of change. Because of the geomorphology of the New England and Mid-Atlantic (rocky coastlines, large embayments and beaches) as well as data gaps in some areas, this report presents beach erosion rates for 78 percent of the 1,360 kilometers of the New England and Mid-Atlantic coasts.

The New England and Mid-Atlantic shores were subdivided into a total of 10 analysis regions for the purpose of reporting regional trends in shoreline change rates. The average rate of long-term shoreline change for the New England and Mid-Atlantic coasts was -0.5 meters per year with an uncertainty in the long-term trend of ±0.09 meters per year. The rate is based on shoreline change rates averaged from 21,184 individual transects, of which 68 percent were eroding. In both the long and short term, the average rates of shoreline change for New England and the Mid-Atlantic were erosional. Long-term erosion rates were generally lower in New England than in the Mid-Atlantic. This is a function of the dominant coastal geomorphology; New England has a greater percentage of shore types that tend to erode more slowly (rocky coasts, pocket beaches, and mainland beaches), whereas the Mid-Atlantic is dominated by more vulnerable barrier islands and dynamic spit/inlet environments. However, the percentage of coastline eroding was higher in New England than in the Mid-Atlantic, highlighting that although rates of shoreline erosion may not be extreme, coastal erosion is still widespread along this region of the U.S. coastline.

The average rate of short-term shoreline change for the New England and Mid-Atlantic coast was also erosional but the rate of erosion decreased in comparison to long-term rates. The net short-term rate as averaged along 17,045 transects was -0.3 meters per year. Uncertainties for these rates range from 0.06 to 0.1 meters per year depending on the data sources used in the rate calculations. Of transects used to measure short-term change, 60 percent were erosional, as compared to 65 percent of coast eroding in the long term. The slight decrease (5 percent) in the amount of coastline eroding may be related to an increase in the frequency and extent of nourishment programs and (or) the effects of hardened structures during the more recent time period. The most stable (lower rates of erosion) beaches were more commonly found in New England. Despite an overall lowering of the average rates of erosion from long-term to short-term, the amount of coastline undergoing more extreme erosion (rates greater than -1.0 meters per year) experienced widespread increase.

Coastal engineering structures that exist all along the New England and Mid-Atlantic coasts affect the rates of shoreline change, which vary substantially along the coast. However, it is difficult to isolate the influence of structures and nourishment projects on the regional long- and short-term rates, and such an endeavor is beyond the scope of this report.