In The Matter Of:
 Coastal Resources Management Council

Hearing

November 1, 2022

Rebecca J. Forte
Certified Professional Court Reporters
33 Rollingwood Drive
Johnston, RI 02919
(401)474-8441

Rebecca J. Forte Court Reporters (401)474-8441 stenorf@gmail.com

Hearing - November 1, 2022

Hearing - November 1, 2022

I N D E X

Approval of minutes 6
Application 2021-07-005 7
WITNESSES:
KELLEN INGALLS
Examination by Ms. Main........... 35
MEGAN EAKIN
Examination by Ms. Main........... 49
GARETH ELLIS
Examination by Ms. Main 57
DR. DREW CAREY
Examination by Ms. Dieter 87
ADRIAN ROSS PEARSALL
Examination by Ms. Dieter 98
KYLE CASSIDY
Examination by Ms. Dieter 106

$$
\text { Hearing - November 1, } 2022
$$

NOVEMBER 1, 2022
(The proceedings commended at 6:13 p.m.)
THE CHAIRMAN: Good evening everyone, and, again, thank you for your patience. I call to order the semimonthly meeting of the Coastal Resources Management Council.

Today is a Tuesday, November 1, 2022. The first matter on our agenda -- well, actually, I'll do a roll call of council members for attendance.

Mr. Sahagian?
MR. SAHAGIAN: Present.
THE CHAIRMAN: Ms. McGovern?
MS. McGOVERN: Present.
THE CHAIRMAN: Mr. Gomez?
MR. GOMEZ: Present.
THE CHAIRMAN: Mr. Izzi?
MR. IZZI: Present.
THE CHAIRMAN: Mr. Gagnon?
MR. GAGNON: Present.
THE CHAIRMAN: Ms. Hall?
MS. HALL: Here.
THE CHAIRMAN: And I'm Ramond Coia, and I'm here. Let the record reflect the CRMC staff members that are present this evening.

And the first matter on our agenda would be the approval of the minutes of the previous meeting, that meeting being held on Tuesday, October 11, 2022. I know they have been disseminated. I'll entertain a motion to accept them.

MR. SAHAGIAN: So moved.
THE CHAIRMAN: Motion has been made by Mr. Sahagian.
MR. GAGNON: Second.
THE CHAIRMAN: Seconded by Mr. Izzi. Was it Izzi or Gagnon? Mr. Gagnon.

All those in favor say "aye."
(All members present responded "aye")
THE CHAIRMAN: All those opposed.
(No reply)
THE CHAIRMAN: I am abstaining. I was not here that evening.

The next matter is subcommittee reports.
MR. WILLIS: There are no subcommittee reports, Mr. Chair.

THE CHAIRMAN: Staff reports.
MR. WILLIS: No staff report again tonight, Mr. Chair.

THE CHAIRMAN: Which brings us to our one agenda item. All right. Our one and only matter to be heard
this evening is review and action regarding application requiring pubic hearing and special exception. That matter being 2021-07-005, Revolution Wind. For the benefit of those here, I will read what the application is.

It's two submarine export transmission cables of 275 kilovolt high voltage alternating current have been proposed for the project. Each cable measures approximately 23 miles in length and has been proposed to be installed in CRMC Type 4 and 6 waters in Rhode Island Sound and the West Passage of Narragansett Bay, making landfall at the Quonset Business Park, North Kingstown. The export cable will cross an area of particular concern as identified by Ocean Special Area Management Plan Section 11.10.2, and will require a special exception under Coastal Resources Management Program Section 1.1.8.

The cables will be installed at a target burial depth of four to six feet (or deeper) below the seabed, which will create a total estimated disturbance of approximately 730 acres within state waters. Secondary cable protection in the form of rock bags, concrete mattresses, and/or rock berms may be used where the target burial depth could not be achieved.

The export cables will make landfall at the Quonset

Hearing - November 1, 2022

Business Park, the heavily industrial waterfront, via horizontal directional drilling, which will require the construction of the two offshore exit pits.

After joining with the export cables, the onshore transmission cable will follow Circuit Drive northwest to 135 Circuit Drive, where it will cross this property north of the existing driveway and cross the property in a north-northwest direction until reaching the property owned by Quonset Development Corporation. Here the cable will continue north until reaching 101 Circuit Drive. The cable will then continue north across 101 Circuit Drive and 75 Circuit Drive within the existing paved access road to the existing Davisville substation. At the Davisville substation the cable continues west, parallel to the northern property boundary before reaching Narragansett Electric Company's parcel. After crossing, the cable enters the onshore substation, tying in to the proposed access road. The total cable length is approximately one mile.

So that is the application and the description of the application before us this evening. The applicant is present. Attorney Robin Main is here representing the applicant. And prior to calling upon Mr. Skenyon, who I believe did some review of this, I'm going to ask our

Executive Director, Mr. Willis to give us a brief description and game plan for this application.

MR. WILLIS: Thank you, Mr. Chair. I just want to bring everybody up to speed where we're at and why we're here and some of the logistics of this meeting, and I'll go into some detail about where we're going to go with the process of the meeting and where we're going to go from here forward.

So the application that we're hearing tonight is for work as explained by the Chair, as requested by Revolution Wind, that is within state water and state jurisdiction only. As you all know, there is an offshore wind farm also being proposed, but this particular application is only for the work that needs to occur in state waters in state jurisdiction. So we will not be talking about the offshore wind farm tonight or at any related hearing on this matter.

But there is a lot to cover tonight. We anticipate this application will be heard over the next -- over two meetings, tonight and at the November 22 nd meeting. We have set aside those two hearing dates to hear this application.

We will hear from staff on the proposed work. We'll also hear from the applicant on the proposed work, and
we'll also hear the applicant's arguments as to why the project is consistent with our program. We'll hear from staff on our review of the activities and the application's consistencies with our program.

I just want to let everyone know that we have spent a lot of time with the applicant working on a lot of different issues associated with activities being requested. We've spent several meetings going over specific issues. We've invited our Fisheries Advisory Board, our Habitat Advisory Board to those meetings to discuss them and find ways to find common ground on how to move them forward. We've also had weekly meetings with the applicant. Every Friday morning at ten o'clock we've had meetings with the applicant to go over these issues in detail so we can find common ground on how to move the issues forward.

There's been a lot of discussion with all the parties involved on a lot of the different activities involved in this application to try to find that common ground. We're all looking for agreement on how to move forward. Everybody participated in those meetings. Everybody had words to say. Everybody had ideas to move forward. We all didn't agree on everything, but we all agreed to participate, and we all agreed to find common
ground, and we think we did that.
So before I hand it off to staff, I just want to recognize them. Justin Skenyon, who did a large part, wrote the staff report with input from all of us, but was a principal staff person that moved this issue forward. Kevin Sloan, David Ciochetto, Laura Dwyer. Myself, I had a hand in this. And many other staff worked very hard to get the staff report to the point where it is today that we can work with the $F A B$, we can work with the applicant on that staff report and stipulations contained therein to be in agreement on how to move the application forward.

So I just wanted to recognize them for their hard work and thank them very much for the amount of time and effort they put in. It's obviously well recognized, and I just want everyone to understand that.

So, Mr. Chair, if you don't mind, I would like to turn the rest of the presentation to Justin to present the issues as we saw them in our review of the application.

THE CHAIRMAN: Thank you, Mr. Willis for that. Well, before that, any questions of Mr. Willis from council members?

Hearing none, Justin Mr. Skenyon, please. Thank
you.
MR. SKENYON: Thank you, Mr. Chair. All right. I'm going to start off with touching on what Mr. Willis has just outlined with what this project is going to be focused on here tonight.

This project and CRMC is in basically three parts. We have the Ørsted federal consistency portion, which is the wind turbines. What we're reviewing tonight is the inland cable substation and the cable going up West Bay Passage. This does not include the transmission facility, that's covered under a fresh water wetlands application. So tonight I thought the best way to move forward, and I'm going to touch on all the areas of the application that were of critical importance, and I'm going to do that from the order basically from offshore to inshore, winding up just to kind of give a vague outline of how this is going to go.

So as described, this project includes two offshore transmission cables running parallel for 23 miles up the West Bay Passage.

Back in 2018, CRMC with a bunch of stakeholders from FAB to communities to experts with applicants with offshore wind representatives and representatives from DEM and NOAA, I believe, started off the process of the
notice of advance public rule making to include a change to our red book that included requirements for the cable. One of these was a -- it was a cable loop proposal for a corridor. The applicant is using this corridor as kind of a -- how do we describe it? We have set this area aside to -- of course from our conversations and everything, this was a very solid way to avoid as many impacts as we could without giving anyone from Offshore Wind access to an onshore tie-in. That's a big thing with this project is where the cable has to go. It has to make landfall. And this is a large amount of power. The PPA right now is for 704 megawatts, which gives limited avenues from where the power can flow into the grid.

So part of that -- and the biggest part of minimizing any potential impact, the staff believes, is ensuring the cable achieves proper cable burial depth, that is between four and six feet or deeper. This is kind of the best area where it minimizes all potential negatives of a cable getting exposed to anything or getting damaged, and it minimizes impact from EMF.

So working with the applicant we were able to go through and talk and go through to try to ensure what is the best methods they could use and the best technology

Hearing - November 1, 2022
they can approach for trying to achieve this goal.
So in our discussions with them, the application indicates that up to 10 percent of the cable may be exposed to certain things, and, therefore, requires secondary cable protection. That is, you know, a problem because, you know, you have increased impacts to changes -- you have impacts to the environment and permanent habitat change from soft bottom habitat to hard bottom habitat, you have potential snags that the fishing community can run into, you have an increased EMF impact due to -- the details, I'll get into more detail with EMF in a bit.

The applicant indicated that they showed us they have done the upmost to choose the best method they could. They're using two primary methods throughout the Bay, one is a mechanical plow and the other is a jet plow. They're going to change those out at the Jamestown Bridge area due to the fact that it's more shallower over the Jamestown Bridge, and the bottom habitats will get more confused using a jet plow.

So when you look at cable burial and how we come to understand it, the biggest thing is to stop the cable from being problematic from two factors. First is changing of equipment or mechanical breakdown or anything
that stops the process. So if you have to bring the cable up to the boat to fix something or fix the machine, that cable cannot go right back to where it started. It has to be out, it has to get retrenched, because that will lead to exposed cable. The second is if something gets hit, that will knock the machine up or off the site, whether it's a different sediment layer or an unforeseen boulder.

So working with the applicant, they have done their duty to go through and measure sediment, analyze it, and come up with a profile of the cable from the state boundary all the way up through the Bay. This includes sediment analysis and samplings and doing seismic scan sonars. And from those they were able to identify areas of boulders that were potentially in the way that will be moved during the process.

We did stipulate how that can be done in the report, and that was in contrast with the work of DEM for that part. That's critical, because, if anything, if you hit a giant rock, it's going to pop out. So the applicant has identified these locations and done a plan to do seabed preparation to change that.

So with those measures we feel that the applicant should achieve the best they can, or best possible with a
current technology and methodology for this kind of cable to have the least amount of exposure they can.

And now I'm going to go into why that's critical. As mentioned before, like, this cable is going to go through seven crossings that will require secondary cable protection. These crossings are usually cables or pipes that you cannot cut through so you have to go over, and if you go over, then you have to pad it, so that way nothing gets hit. And you have to pad it in such a way that it doesn't get knocked off. And anything like that, anything of that nature, is a hazard to the applicant's cable, but also to anyone who is either fishing out there or, you know, gets near it, it has an impact.

So we have called for the applicant to outline and survey and hand off to the fishing community with new maps and new information any of these potentials that are going to exist out there.

And then when you look at the potential -- when you look at what's going to be used, the applicant has a few options which they will deem with their cable burial plans, and we'll come back with what would be the best tool for which kind of exposure we're looking at.

There's many different kinds of ways the cable can be at risk and possibly exposed, not all of them require

Hearing - November 1, 2022
the same solution. The most popular one is what we call mattress protection, which is an articulated concrete mat that's linked together that will be laid down on the cable. And they use rock bags and that kind of -- and that is another option. We requested the applicant to work to, and they have indicated they want to address those methods, that will have the least environmental impact.

We have noticed that now from the Block Island project that particular mattresses there, and through some other studies of other things, they are not always the most conducive, but they are the industry standard, and they are very effective. So that requirement is something the applicant is willing to do as part of the mitigation process of any potential impact.

Second, we have heard from the fishing community at large their concern about EMF, electromagnetic fields being generated from fields. Power cables of this size and with this much power through it have a large magnetic output, and as with species and a lot fish and a lot of all those, lobster, crab and so on, they use sense or electromagnetic fields as part of their, you know, way they navigate, the way they sense, the way they hunt. And so that stuff can have potential impacts, if high
enough, to the fishing, the environment, essentially.
The way to properly address EMF is through trying -through distance, and in this case that means bury it deep. And if you bury deep consistently, there's a world of difference even a few feet can make. The applicant has given us some estimates on their -- what the EMF should look like at peak loading. So peak loading is at 704 megawatts. A cable that is just protected by secondary cable protection, which doesn't impact EMF. Secondary protection is not shielding in any sense. It's about 1,052 milligauss, which is -- it's pretty significant. It's not to the point -- it's at a point where we've seen some studies indicate that there could be potential issues, but it's not universally considered the threshold.

BOEM has put out some indication -- BOEM and other scientific literature has indicated that that threshold is a little higher than that, also, that a sea current is different than the current that is a natural background magnetic field. But there's also other reports we talked about in the community we received from our -- from URI that indicated that that's not always the case. So there's still some scientific literature debate on it, and given the nature of this cable, and the fact there's
two of them, and it's going up the Bay, we endeavor to minimize any theoretical impact. Which to prove that, Revolution Wind has demonstrated through the estimates that even achieving like a three-and-a-half foot burial depth would reduce any EMF to the surface to like an 82, if I remember that number correctly, which is, you know, almost a factor of ten reduction, and one of the things we looked at in trying to minimize impact.

So those are major concerns with the cable.
During the installation process, the mechanical plow and the jet plow, they operate displacing the sediment and plowing through it, essentially. During displacement there will be sediment kick-up, which is a concern to certain environmental factors, such as benthic species and some others, any agriculture in the area, potentially any of that. The staff reviewed those concerns and does not -- it indicates that even though the impacts would exist, given in essence the relatively small area, compared to the rest of the environment, that the sediment will be temporary, as in days and hours, to return to the normal background sediment. This disturbance is kind of unavoidable, but also not disastrous.

And we also planned -- also, the applicants

Hearing - November 1, 2022

indicated that they are within the risk that agriculturists seem to be concerned. Most agriculture sites are far enough away from the cable and main activity that they shouldn't be affected by what we've seen in our staff report unless other changes occur.

So that is for the Bay cable heading to near shore. At near shore the applicant is going to do a horizontal directional drilling activity. This was absolutely requested by CRMC, and the applicant has agreed. Coming off of our experience with the Block Island wind project, where the onshore cable was not horizontally drilled at first, it was trenched all the way to the substation. It came unburied. It came unburied on a public beach, and it affected a lot of people, and affected -- cost a lot of money to eventually have to buried for an awful lot of money to Deep Water, which is now -- which was bought out by Ørsted, and the cable itself was bought out by National Grid, and it cost National Grid a lot of money to have to rebury it, and it took about two years to accomplish that.

So we indicated, you know, they should very seriously consider to do this method, and they agreed, and we're here.

So horizontal directional drilling is when you

Hearing - November 1, 2022

pretty much put a whole deep underground all the way through, and it comes up the other end, and you filter it through. So all the above sediment, all the above rock and everything is still there. So you didn't remove it, and it allows you to get much deeper.

The applicant has indicated that the depth should be between 10 and 18 feet, which is more than sufficient probably for any coastal activity that could disrupt it.

Now, to do this, an exit pit is going to be formed offshore. They're going to dredge the -- I'm sorry -they're going to dredge the material out of this pit, load it up into barges temporarily, do the pull through, through the line, connect the cable there, rebury everything.

This is consider a dredging application style. That's -- that is the best way to do this, also, the least impact to users, the least impact for the least risk.

The location also of the cable outside of horizontal directional drilling is good. The applicants worked very well with Quonset to get all the permissions needed and required to land their cable there. This is not on a public beach, this is not a wetland, this is in a heavily industrial area, a prime location for an activity that is
disruptive like this.
From there the applicant is going to trench the cable inland along what was outlined by the Chair earlier. It follows mostly roads, and then it's going to cut across the transmission facility and into what they're going to construct to be a new substation.

They have done the permissions to go along the area. North Kingstown is signing off on this. They went through the approval process of the Energy Facilities Siting Board. The Energy Facilities Siting Board has requested and the applicant worked with us to fulfill that request that they should alter the route to not impact a local neighborhood. That was done. It didn't go -- you know, they worked to give an update on that, and we approved all that, and we're happy the applicant can now avoid noise mitigation and potential traffic hazards.

Also, all this work, we mentioned the time of year restrictions, all this work is going to happen during our traditional dredge window from end of October to early January -- sorry -- early February, over basically two years is the term of construction. That is a very important requirement of the applicant, because it will limit potential impact to anything recreational by not
heading into any of the summer months and potential impact to multiple species.

I'll go into the potential species impact a little later, why we think that some of the major species will not be impacted, will not be critically damaged or critically affected, but I'm going to cover the substation first.

So the applicant is going to need to build a new substation to handle the power. Their existing location is nearby an existing transition facility that will be upgraded as part of this project, but that is not handled under this application. So that is the main reason why the substation is going there, to put a new tie-in so it meets the purpose it needs there. It's also being built on what is the old capped landfill from the days when Quonset was used as a military base. So this area, nothing can really be built on it that would be, like, people consideration, so this is a good use for that kind of land.

The applicant has shrunk the size of the facility to the greatest extent you can shrink one of these substations while still holding on to all of the safety requirements. The spacing there is what the stations require through other federal regulations. There's
limits to -- there's limits to how much distance you can retract and how big the fences have to be, et cetera, et cetera, for worker safety and for the public, like, closing it off.

With that, the applicant will encroach a little bit on the buffer to the wetland, not the wetland itself. So the wetlands remain not directly impacted. Which brings us to what could potentially directly impact them, which is stormwater.

The applicant -- we have worked really hard and really well with both DEM and the applicant about stormwater analysis for this project. The applicant -there's couple of changes to the regs that we had to look at, because the way the substation is, there's certain -you can't have a lot of recreational of any kind near a substation because you can't. It's a giant electrical facility. It's actually a risk to have anything hanging close by. But you still have to be able to meet what is needed in terms of work quality certification. The use the temporary roads is fine because of the lack -- the lack of -- traditionally, gravel roads are not considered impervious under this regulation, because if you use them enough, they do -- the stone breaks down and kind of creates a solid surface, essentially. But if you have it
temporarily, as this facility will, due to the not always manned nature of it, that is more welcome too. It will not affect it. So that was good.

I think the one thing I did forget to mention, back to impacts with species and impacts to recreational. This cable is assumed that once it's buried it will remain buried unless there is a critical failure of some kind, which is unexpected, such as an anchor tearing at it or anything, which goes back why we achieve proper burial depth, that that minimizes the risk of any potential snags.

So during the lifetime of the project, which is estimated to be 25 years, maintenance on the cable is not really expected, or it will have to be a critical problem for that. Not to say no work is to go happen out there. We request the applicant to ensure the cable remains buried, perform surveys, and will we work with DEM to write those, and the applicant to write reasonable timelines for routine surveys. The surveys we will conduct throughout the entirety of the state cable, and will be reporting to CRMC. This will ensure if anything is missed, or anything becomes uncovered, or for whatever reason, for instance, if the applicant knows there's a storm that comes by, they will have to go out, you know,
depending on the size of the storm, like a once in 50-year event will require, you know, to probably have someone to check it. Those will ensure everything is pretty much continuing to function and continue to have minimal risks that we can.

So that's during the lifetime of the project. Periodic surveys happening every five to ten years, sometimes more frequently depending on the weather.

Decommissioning is still a bit theoretical at this point. BOEM is working on this. This is kind of a new thing for these projects.

Now, for impacts to the environment, specifically, species that are in the area. Time of year restriction was a massive part, as I mentioned earlier, of trying to avoid impact to these species. A major one -- there's a couple of major species under consideration that we at CRMC were focused on. Submerged aquatic vegetation, or SAV. There really is no SAV near this project in any reasonable degree that should be impacted. The closest SAV we have are basically 850 feet away and over a thousand feet away. Given the models we've seen, the sediment -- the sediment is not going to result in significant burial.

There's also any benthic species, so anything like

Hearing - November 1, 2022

mussels, mollusks, conch, worms that live along the ocean sediment, they will be impacted obviously from a plow going through, but this is comparatively for the entire disturbance area, compared to the rest of the Bay, they will be able to repopulate in a few years at most, and, relatively speaking, be minimally impacted compared to large areas.

Winter flounder also lay their eggs. They're one of the few species that like to procreate during the winter months, but their eggs tend to favor sandy bottoms and shallow water habitats, which are pretty far away from where the cable is going to be. So their eggs are vulnerable to burial, they should be, you know, much farther away. We don't anticipate impact to the population. So there are other species in the area, but those are the ones that were the major concern.

This application also comes with two variances and special exception requests, which I'm going to leave the applicant to discuss in more detail. The special exception is to our APC for recreational. And the variance request is for monitoring pre-application requirements.

And with that, I think that's everything I need to conclude with the brief overview of the staff report.

Hearing - November 1, 2022

THE CHAIRMAN: Thank you, Mr. Skenyon.
Any questions of Justin? Don.
MR. GOMEZ: I'm just trying to get everything straight in my head. And you answered some of the questions that I had. Is the cable -- what's the armoring that's used on that cable? Is it one you go over the pipelines or that type thing to get that second protection?

MR. SKENYON: Yes.
MR. GOMEZ: The cable has special armoring. You indicated there were mattresses and the rocks and things.

MR. SKENYON: Oh, so the cable itself?
MR. GOMES: Yes. Just to toughen it up more. Is the whole cable around it --

MR. SKENYON: Yes.
MR. GOMEZ: -- the whole cable around it, or just those areas that come up on the surface? It doesn't really matter, I guess. The basic question is the armoring.

MR. SKENYON: So the cable itself is actually like -- the best way to think about is like three cables combined surrounded by, like, a shell. So it's a pretty thick shell around those three cables. And then whenever it gets close, there'll be like an artifical something,

Hearing - November 1, 2022

like, either a -- you know, industry standard is concrete mattresses, so there will be nothing except for the cable itself and at least three and a half feet or four feet of sediment. And then if there is not that, then --

MR. GOMEZ: So the mattresses like on Block Island?
MR. SKENYON: Yes.
MR. GOMEZ: And then you put sediment over the top of that, is that what you said?

MR. SKENYON: No. You would not put sediment over the top of the mattresses. It might accumulate there naturally, but usually the mattresses lay down. It's usually in areas where the sediments will not stay that you put the mattresses down.

MR. GOMEZ: And on the magnetic or the EMF
shielding, what materials did they use to try to, you know, contain the EMF? Like, you know, I'm familiar with Netic and Co-Netic type materials that basically will encapsulate the EMF and reduces the output. Was the cable built with any regards to the EMF or the shielding embedded inside the cable?

MR. SKENYON: Um, yes. Okay. So this is a little bit more complicated question than --

MR. GOMEZ: Well, I'm just -- I'm bringing it out, so that it will get answered along the way.

MR. SKENYON: Yes. No, this is part of the nature to deal with a large project like this. There was a further analysis presented by the applicant to BOEM that indicated how the binding of the cable itself can help the cables themselves cancel out --

MR GOMEZ: Exactly.
MR. SKENYON: -- the EMF.
MR. GOMEZ: Exactly.
MR. SKENYON: I considered that. I also -- we also received that analysis without, and obviously with the cancelling there's been less EMF. So this represents not only the worst case in terms of -- so it doesn't include that analysis, our analysis, but we are aware that the applicant will do that.

MR GOMEZ: You're relying on basically burying it to try to contain it.

MR. SKENYON: Yeah.
MR. GOMEZ: Is there anything that was done to determine any effects on ship electronics, effects to small crafts, any of that, or we don't anticipate any EMF problems or electronics, you know, GPS systems, things like that?

MR. SKENYON: We really don't, because EMF, like how it works, as you get farther away, it gets exponentially
less powerful. So like even in the worst case, you're looking at, you know, three to four feet of a water column going back to basic background, essentially. MR. GOMEZ: That's good.

MR. SKENYON: You know, so unless you're really, really shallow, it's going to be washed out, essentially, at that point.

MR. GOMEZ: This is a broad frequency considered associated with the EMF. Is it pretty much -- is EMF pretty much contained in a small range, or is it quite large, I guess, in scope?

MR. SKENYON: It's contained in a fairly small range of 60 hertz. Around that.

MR. GOMEZ: Okay. Do you consider 120, which is probably -- a high frequency will probably reduce faster? MR. SKENYON: Yeah, that is possible. This would be around 60, which is opposite to like the . 01 hertz tested. Yeah.

MR. GOMEZ: I don't want to belabor this.
MR. SKENYON: No, go right ahead.
MR. GOMEZ: I'm trying to sort things out in my head so I won't have to ask again. On the cable lay, is that -- you said you did sub-bottom profiling of the rocks to determine if you had rocks and things?

MR. SKENYON: Yes.
MR. GOMEZ: Okay. Good. Let's see. All right. So we learned about their trenching out of the Block Island thing, that was good. And more of a operational question, which you didn't cover, but I'm wondering if there's going to be the use of any independent observers to watch this process as we did for the Block Island one; yes?

MR. SKENYON: Yes. Certified CVA's will be present for the entire thing.

MR. GOMEZ: Exactly.
MR. SKENYON: It will be the same CVA's used for the federal consistency.

MR. GOMEZ: You mentioned decommissioning. What do we expect for life expectancy for this?

MR. SKENYON: This project is expected to be constructed and fully operational -- constructed within two years and fully operational for 25 years.

MR. GOMEZ: Block Island ended up 25 years.
MR. SKENYON: That's kind of what we're seeing in a lot of lease proposals is a lease of 25 years.

MR. GOMEZ: Thanks for your patience.
MR. SKENYON: Oh, no, I'm happy to.
THE CHAIRMAN: Any other questions for Mr. Skenyon

Hearing - November 1, 2022
by council members?
Hearing none, I will now turn it over to the applicant and Attorney Main.

MS. MAIN: Thank you, Mr. Chair. Good evening. My name is Robin Main. I'm an attorney with the law firm of Hinckley Allen. My partner from Hinckley, Christine Dieter, and I represent Revolution Wind.

On behalf of Revolution Wind we want to thank all of you for the opportunity to present here tonight, and we do want to extend our thanks to Justin Skenyon, Kevin Sloan, David Ciochetto, and Jeff Willis for all the work, and Jeff talked about it a few minutes ago, but for all the work that the staff has done on this application to bring us here before you tonight, including the extensive work on the staff report. All much appreciated.

Tonight Revolution Wind relies on its application and the various filings to support its request for an assent, and we showed through those filings, and we will further affirm that with the testimony tonight, that we meet the requirements of the CRMC program in order for an assent to issue under this Category B application.

So tonight we will present several witnesses. The first witness will cover an overview of the project. Then the next witness up will talk about the construction
schedule, among other things for the project, including some of the local permitting. Then our cable expert will come up and describe some of the installation work for the cable and had also address some of the points that Mr. Gomez made a few moments ago. And then we will finish up with a few witnesses who will deal with our special exception, rebuttable presumption on the recreational area of particular concern, and then our request for a variance.

So if the Chair and the council would like this evening, we can make at the conclusion of that testimony our arguments for the special exception and the variance, but that's certainly up to the council. And without further adieu, I will call or first witness so we can get on with this evening.

THE CHAIRMAN: Please proceed.
MS. MAIN: Thank you. Our first witness is Kellen Ingalls.

Do you swear him in?
MR. DeSISTO: Please raise your right hand.
KELLEN INGALLS (DULY SWORN)
MR. DeSISTO: Please state your name and spell it for the record.

THE WITNESS: Kellen Ingalls. K-e-l-l-e-n

I-n-g-a-l-l-s.
MS. MAIN: It might better if you angle a little bit so the stenographer can also hear you.

THE WITNESS: Okay.
EXAMINATION BY MS. MAIN:
Q Again, state your name for the record.
A Kellen Ingalls.
Q And, Kellan, by whom are you employed?
A \quad (rsted.
Q And what is your role at Ørsted?
A I am the Project Development Director for Revolution Wind.

Q And is Revolution Wind the only project you work on, Kellan?

A It is.
Q Before we get into your job at Ørsted as the development director for Revolution Wind, tell the council briefly about your educational background and professional experience leading up to your time at Ørsted?

A Sure. So I have a master's degree in English with a concentration in environmental studies. Since receiving that the degree I've focused mainly on renewable energy development here in New England and New York from small scale solar to now offshore wind. And I joined Ørsted
approximately three years ago.
Q Thank you, Kellan. And, Kellan, I want you to describe to the council who the applicant is here tonight. It's Revolution Wind, LLC, but the tell the council more about what Revolution Wind, LLC is.

A Okay. Yes. Revolution Wind, LLC is a $50 / 50$ joint venture between Ørsted and Eversource. Eversource, of course, is a regional utility with a lot of experience building transmission and related infrastructure. They have spent billions of dollars on transmission and substations and cables. And Ørsted is the world's leading offshore wind developer. We've been doing it for about 25 years, including the very first offshore wind farm in Denmark. And since then we've installed approximately 1,600 wind turbines, and that makes for about 7,500 megawatts of capacity for around the world.

Q Thank you. And now I'd like to turn your attention to an overview of what the Revolution wind project is. And with that we're going to show a demonstrative so that Kellan can speak to that more.

So, Kellan, explain Revolution Wind at a general level, and then focus on the state jurisdictional aspects.

A Sure. Understanding that it's not a subject of tonight's
proceeding, I'll just start for some context with the wind farm.

We've submitted to BOEM an application for up to 100 wind turbines out in this lease area. Each of those wind turbines will be connected to two offshore substations by buried array cables, out there in the wind farm lease area again. From those substations there will be two export cables running from the wind farm itself, and you can see the green line being traced here, approximately 19 miles in the federal waters, and then the remaining 23 miles in state waters. And as we heard from Mr. Skenyon, that cable will be buried at a target depth of three to four feet.

Once the cable gets to shore -- and I'll point to that. I may have another slide following this one. Ah, there we go. Once it gets to shore, landfall will be at Quonset Development Corporation's property, the Quonset Business Park, and we will be installing it by a horizontal directional drill, $H D D$ we sometimes call it. That pit to bury that will be approximately 1,200 feet out off of the seawall that's there at Quonset. That HDD method will allow us to bury the cable or to drill the cable at a depth of approximately 60 feet at its deepest. Underneath the seawall, a concrete seawall, emerging in a
parking lot in the Quonset Business Park at a transition joint bank, where it will merge with the onshore portion of the cable, which is the line in purple. That's approximately one mile. Buried primarily underneath roads along private property where we've worked with the landowners to find the best possible route there.

From there it goes into the property that was described by Mr. Skenyon where we'll construct a offshore -- excuse me -- an onshore substation, along with interconnection facility where the power will connect to an existing substation at Davisville.

Q Thank you, Kellan. And now let's address need. Will the Revolution Wind project fulfill any needs in Rhode Island?

A It will.
Q And explain to the council what that is.
A Sure. So as you undoubtedly know, Revolution Wind has some of the most ambitious clean energy goals in the nation.

Q Rhode Island.
A Excuse me?
Q You said Revolution Wind. Rhode Island?
A Rhode Island. They're synonymous. Rhode Island has some of the most ambitious clean energy goals in the nation.

Hearing - November 1, 2022

So just this year it was mandated that all power by 2032, I believe, will be will coming from renewable sources.

So the 400 megawatts that is contracted through Rhode Island from Revolution Wind will play a large role in meeting that mandate. We're going to need large projects like offshore wind to fill that need, and Revolution Wind is in a great spot to do that. So, Kellan, you said that Revolution wind is bringing in 400 megawatts to Rhode Island of energy. All right. And how is that done? Is there an agreement for that?

A Yes. There is a power purchase agreement which was approved by the Rhode Island Public Utilities Commission in the summer of 2019.

Q And does that power purchase agreement have any type of milestones that you must meet in it as far as getting energy into the State of Rhode Island?

A It does. So our current schedule has us operating in 2025, and that's right in line with the power purchase agreement milestones. And if we were to go beyond that, there are consequences, including potential termination rights and things that we don't want to occur.

Q And are you aware of the project's construction schedule?
A Yes.
Can you tell the council briefly about it, but keep in
mind the next witness will talk about it in more detail?
A Sure. So we have Megan Eakin here, our permitting manager, to talk about the nitty-gritty details with the schedule. But from a very high level we expect to start construction in the fall of 2023, that's when BOEM's permit schedule has its last milestone and we received a final approval to begin. And so we would complete the rest of the wind farm construction beside the HDD, the horizontal and directional drilling, and a portion of the seabed clearance activity in 2024, that includes the foundations and much of the cable laying and the wind turbines themselves. And then we would be operational in 2025.

Q And that schedule that you just talked about, does that take into the account the time of year restrictions that Mr. Skenyon pointed out earlier?

A It does.
Q Okay. So is there much maneuverability in this schedule in order to fulfill the milestones under the PTA?

A No, there isn't.
Q All right. And, Kellan, tell us, will the rate payers of Rhode Island be on the hook for any of the cost of the project?

A No.

Q And is there any Rhode Island state money in this project?

A No, there's not.
Q Is there any federal money in this project?
A No, there's not.
Q So let's focus on the Category B application. Are you familiar with the Category B application that's before the council tonight?

A \quad I am.
Q And what was your role, if any, with the development of this application?

A So as the development director, I oversee permitting, site investigations, so the geophysical and the geotechnical investigations of the seafloor, the commercial aspects of the wind farm, the design of the wind farm and cables, and the big picture. And so I'm there to make sure that everybody is talking, that we're planning all the best information, that we're using all the best resources available at our disposal within the company so we have a really world-class cable installation and engineering team, bringing them in.

Gareth Ellis is here to talk to you tonight from that team. Site investigations, I mentioned, geophysical and geotechnical information that they're receiving,
that's understanding what rocks and dirt and everything is below the seafloor, what are we getting ourselves into here for when we dig.

And also the -- so that's the geotechnical. The geophysical would be what obstructions are there, shipwrecks, unexploded --
(Interruption by the court reporter)
A -- unexploded ordnances. Right. So making sure all that information is brought to bear for this application.

And so we're also working with a phenomenal consulting team, BHB, is working with our permanent folks to compile this application. And they bring a really regional/local expertise that fits well with our own permitting team that adds to it, where we bring in sort of a worldwide experience in this type of permitting.

So it's making sure everybody is talking, we're making sure we're getting all the best information.

Q Right. And, Kellan, I now want to turn to another topic. Will Revolution Wind create any jobs in Rhode Island?

A It will.
Q Explain what jobs will be created by Revolution Wind in Rhode Island?

A So it's estimated that Revolution Wind will create approximately a thousand direct construction jobs, that's
during the construction of the wind farm in Rhode Island. On top of that, Ørsted has established its co-headquarters right in Providence, and there are a number of people employed there. We've grown very quickly.

We have also set up an innovation hub in the CIC space in Providence, which really connects upstart businesses, good ideas, people who want to get involved in the offshore wind industry as it emerges. We help make those connections, help ideas became really tangible products that we can then really work with them on. So that's what Ørsted has been able to do as a result of Revolution Wind in Rhode Island. The project itself is also committed to spending tens of millions of dollars on Rhode Island ports. So you can see that right now at Prov Port where we've constructed a foundation component facility. Those components will be the complicated steel pieces that are going outside of the wind turbines. We're making those right here in Rhode Island.

We've also signed an agreement for a helicopter use program at Quonset. Quonset is going to be a major part of our operations for our entire U.S. portfolio, not just Revolution Wind, but Revolution Wind has helped to make
that happen.
We're also building a fleet of crew transfer vessels right here in Rhode Island. It's Blount Boats and Senesco. So those will be used to transport our crew right out to the wind farm from the operation hub. And, Kellan, I want to turn back to the job creation. You talked about approximately 1,000 construction jobs being created, and then obviously the headquarters here and some other jobs through the manufacturing of the crew transport boats and so forth. Are there any other type of indirect jobs that will be created by the project?

A There will. That number becomes closer to 3,000 when you consider the services, the equipment that will be purchased by those employees, those workers, all the money spent because of those 1,000 approximate jobs, all the money that is spent from there during the construction phase.

MS. MAIN: Thank you. I have no further questions for Kellan Ingalls.

THE CHAIRMAN: Any questions from council members?
MR. GAGNON: I just have one. You mentioned the target burial depth of three to four feet.

THE WITNESS: Right.
MR. GAGNON: But our staff report, and from what I
understand, the target depth is four to six feet.
MS. MAIN: Yes, I thought you said four, but, yeah. THE WITNESS: It was a mistake on my part. I apologize. Four to six feet target burial depth.

MS. MAIN: I'm sorry. I thought you said four. It was probably three.

MR. GAGNON: There was a four in there.
THE WITNESS: I got one of them right.
MR. GAGNON: Thank you.
MS. HALL: Really quick. Mine is probably really easy. You may have said it. You mentioned a couple of times about your role in terms of keeping everyone talking. And there was some discussion in the report regarding historic preservation, and I was just curious about your outreach to indigenous communities along the coastline with respect to that. I realize that there was a proposed condition regarding a memorandum of agreement, and that there would be oversight involving CRMC at that point, but pre-project I'm guessing, but I'd like to hear more about what you've done for that kind of reach-out to really think through it, because we have that issue here on Rhode Island on the coast with underground cables with wind.

THE WITNESS: That's a great question. Thank you.

We have -- that's a really important thing for us, to maintain a relationship, to reach out to the tribes to bring them into the discussion of what's happening, that's both onshore and offshore, the submerged lands of some of their ancestors 10,000 plus years ago, time immemorial.

So we have had extensive outreach and discussions with tribes. I believe we are the first offshore wind company to bring a tribal relations lead on board to help us facilitate those discussions. We think that's the start of what we should be doing with this industry. And so there's a tie on the state level to what's going on in the federal level with Section 106 where we consult on historic and cultural properties. But it has to go deeper than that. We recognize that, and that's a really important part of our outreach.

MS. HALL: So with that, is there any survey work? You talked about boulders. You know, anything significant to authentic characteristics? What about surveying for those types of cultural artifacts?

THE WITNESS: We have done those surveys as well out in the ocean itself, or those cultural resources, but also at the site of our substation onshore, and we had input from members of the tribes on that.

Hearing - November 1, 2022

MS. HALL: What about in between?
THE WITNESS: And in between. All the way, start to finish.

MS. HALL: Thank you.
THE CHAIRMAN: Mr. Gomez.
MR. GOMEZ: Just before I get to my questions, the involvement of the tribes, we were heavily involved with them when we developed the OSAMP, which you can look at. There's an interesting section in there on their local history and stuff, and so they were brought on board early. We felt the same need that you're expressing.

I'm interested in where you cited some of the materials that will be built in state and locally. The other materials, where are most of them manufactured, the cable, for instance, or major pieces, or whatever?

THE WITNESS: Sure. The backdrop of this is we're starting a new U.S. industry with a lot of European experience we're bringing in, but bringing that over here to have it stand up on its own is very important to us.

So the cable itself we're working with -- you know, Gareth Ellis can speak a lot more to that -- we're working with a U.S. company on that. We are working to set up a whole supply chain in the U.S.

MR. GOMEZ: Good.

THE WITNESS: We're using, for example, the first U.S. Jones Act compliant turbine installation vessel is being built right now in Texas.

MR. GOMEZ: Great. Thank you.
MS. McGOVERN: The 400 megawatt hours going to the State of Rhode Island. Where specifically are those wind turbines located, in Rhode Island state waters? Where are they located?

THE WITNESS: That's a good question. So, no, the wind turbines are in federal waters, and it's not necessarily a specific turbine that is allocated, but it's an allocation that is done at the metering --
(Interruption by the court reporter)
THE WITNESS: -- at the point of interconnection, the metering point.

MS. McGOVERN: All at the points you've mentioned?
THE WITNESS: That's right.
THE CHAIRMAN: Anything else? You may proceed.
MS. MAIN: Okay. Thank you. We will call our next witness.

THE CHAIRMAN: Okay.
MS. MAIN: The next witness is Megan Eakin.
And I think it might be better if you stand there, and I'll be over here.

MR. DeSISTO: Raise you right hand.
MEGAN EAKIN (DULY SWORN)
MR. DeSISTO: Please state your name and spell it for the record.

THE WITNESS: Megan, M-e-g-a-n, Eakin, E-a-k-i-n.
EXAMINATION BY MS. MAIN:
Q And, Megan, by whom are you employed?
A By Ørsted.
Q What is your job at Ørsted?
A I'm the permitting manager for the Revolution Wind project.

Q And is Revolution Wind the only project that you're working on?

A It is, yes.
Q And, again, before we get into your job on the Revolution Wind project, please describe to the council briefly your educational background and your experience before you joined Ørsted?

A Yes. I have a bachelors in geology and environmental science, also a masters in geology. After college I worked for a few years as an environmental technician. And then in 2008 I joined Ecology and Environment, which is now a WSP, as a junior geologist. I had a very successful career there. I was promoted about every

Hearing - November 1, 2022

three years or so. And about the time I became a senior geologist, I also took on a roll as more of a project manager, where I was focusing on large complex infrastructure projects in the offshore environment.

Q Great. Thank you. Now, Megan, describe to the council what you do as permitting manager for Revolution Wind.

A Yes. So my job is to oversee the Revolution Wind permitting team for Ørsted. I know you heard Kellan mention we have a lot of different teams. My responsibility there is particularly our permitting package, but I also do coordinate and collaborate with our other internal teams, such as you'll hear from Gareth this evening, our site investigations team, our marine affairs team, as we go through our permitting process on Revolution Wind.

I'm also responsible for management and oversight of our consultants. You'll hear from some of them later this evening, as Kellan also mentioned.

And also as part of my role, I did help prepare the package that went to CRMC for our certified verification agent for the project, which is an independent third-party review as the project moves through the various phases.

Hearing - November 1, 2022

Q And that certified verification agent, or CVA, which was referred to earlier in Justin's description of the staff report; correct?

A Yes, it was. And it was also provided to BOEM, because they have very similar guidelines to CRMC for the CVA.

Q Great. And, again, we've got so many acronyms. For BOEM, it's the Bureau of Ocean Energy Management?

A That's correct.
Q And, again, CVA is Certified Verification Agent?
A Yes.
Q So, Megan, explain briefly, and focus on the state permits that Revolution needs to construct its project.

A So first and foremost is we're here to talk about the Category B assent with CRMC, but we also in this past July received our order from the Energy Facility Siting Board, so that was great news for the project, and then we have also applied for a water qualify certificate and a dredge permit through the Rhode Island Department of Environmental Management.

Q Great. Thank you. And did you work on the Category B application that's before the council here tonight?

A Yes, I have -- did.
Q Okay. And what was your role with the development of that application?

A It was my job to oversee and collaborate with other subject-matter experts that provided information, and our internal teams, as that application was prepared, and then it was also my job to review and provide feedback on that application to make sure we were meeting the regulations of the red book and the OSAMP before we submitted that to the agency for review.

Q Great. And since the filing of the application, have you had ongoing communications with CRMC staff about the application?

I think that some of that was referred to earlier, but would you like to add to that?

A Yeah. As was noted by, I think, both Mr. Willis and Mr. Skenyon, we've been meeting regularly. The staff has done a great job reviewing the questions, as evident in those discussions we've had with them and their information requests, we've come, you know, a very long way in providing supporting information, and as Mr. Willis noted, meeting regularly to talk about issues such as cable burial and installation.

Q Great. And talk to us now a little bit about the outreach Revolution Wind has done to certain groups, particularly the public. Can you address that?

A Certainly, so Covid did put a little hamper on, you know,
in-person outreach, but the Revolution project does maintain a project website with a virtual meeting room that everyone can access. And then more recently this past June we held an in-person open house at the URI Bay Campus, which was a really good attendance and positive experience for the project.

Q Now, Megan, I finally want to turn to the construction schedule, and we have a demonstrative for that.

A Can everyone see that okay?
Q And, Megan, are you familiar with the construction schedule for Revolution Wind?

A I am, yes.
Q And does this demonstrative show the approximate construction schedule for the project?

A It does. This is a kind of quarterly high level indicative schedule for the whole entire project, the offshore wind farm all the way to the onshore component.

Q So I'd like you to focus, and feel free to walk up if that helps you at all and points out what line you're talking about, but I'd like to focus on the installation of the cables in state waters and when that will occur.

A Yeah.
Q So can you talk us through that, please?

Hearing - November 1, 2022

A Certainly. So there's a couple of portions that will happen particularly in state waters. The landfall construction, which you heard Kellan mention, and Gareth will get into a little bit more detail on, would happen in the fall of 2023, and then the export cable route would happen in the fall of 2024 .

So that schedule does align. We did take into account those time of year restrictions that were noted in the staff report. So that's been worked in to that schedule for when we can be on the water.

Q All right. And let's break it down more specifically on when the export cable will be installed in state waters. During what months of the year will that occur, Megan?

A Yeah, so there's a bunch of activities that, again, Gareth will talk about a little bit later that encompass around the cable installation, but all those activities will happen between September 1 st and January 31st. Cable installation itself would happen in the months of October and November.

Q And so does the cable installation in the months of October and November, that covers state waters; correct?

A It does, yes.
And that is about 23 miles of cable; correct?

A Yes, correct.
Q And two cables?
A And two cables.
Q So October and November. And does that schedule align with the time of year restrictions that we've been talking about this evening?

A It does, yes. So we are restricted from doing in-water work or seabed disturbance from February 1st through the end of August.

Q So with the schedule that you gave, again, getting toward the end of the year, you've got to be out of the water by February 1st?

A By February 1st.
Q January 31st, that's it?
A Correct.
Q Okay. Lastly, Megan -- and if we could have the chart back up on the screen, please. You're familiar with this chart; correct?

A Yes.
Q And you see where the cable route is; correct?
A Yes.
Q And can you just show that with your finger, just so --
A So if we start up here for horizontal directional
drilling landfall, and it kind of moves out to the state
waterline.
Q So you were, just for the record, you were describing the landfall at Quonset Point on the northern-most end there; correct?

A Correct.
Q And following south through the West Passage and out into Rhode Island Sound --

A
Uh-hum.
Q
A Correct.
Q Focusing on the schedule again, Megan, in the area that's the southern tip of Jamestown, the Beavertail area, and a going into Rhode Island Sound, with the construction schedule that you talked about a few moments ago, when in that schedule do you estimate you will be installing the cable in that area? Again, just at the southern tip of Jamestown further south into the Sound.

A So that would be approximately late October into November.

MS. MAIN: All right. Thank you. I have no further questions for Megan.

THE CHAIRMAN: Any questions of Ms. Eakin from anybody on the council?

Hearing none.

MS. MAIN: Thank you.
THE WITNESS: Thank you all.
MS. MAIN: I will our call next witness, Gareth Ellis.

And, Gareth, this is also a good line up we have here.

MR. DeSISTO: Sir, please raise your right hand.
GARETH ELLIS (DULY SWORN)
MR. DeSISTO: Please state your name and spell it for the record.

THE WITNESS: Gareth Ellis, G-a-r-e-t-h E-l-l-i-s.
EXAMINATION BY MS. MAIN:
Q Great. Gareth, by whom are you employed?
A Ørsted.
Q And what is your job at Ørsted?
A I'm the Senior Electrical Package Manager.
Q Okay. And, again, I want to give the council a bit of your background, so before we talk about your job at Ørsted as a Senior Electrical Package Manager, please tell the council a bit about your background, your education, and your professional experience.

A Sure. I'm a geologist. I graduated in 1993 --
(Interruption by the court reporter)
A Yeah. I'll come a bit closer. I graduated in industrial
geology in 1993, and I took a masters in the same subject in '94. I then proceeded to work in the oil and gas industry in the North Sea as a surveyor -- as a geologist. And post that in 2000 I started working in installation and trenching of subsea cables for oil and gas and in the pipelines, et cetera.

For the last 14 years I have work solely on offshore wind. I've installed -- my management has been installing 750 kilometers of cable, which represents 2.9 gigawatts of power, which can power up to 1.5 million homes. And I'm very proud to bring that out. That's all in Europe, and I'm very proud and happy to be trying to bring that here to Rhode Island also.

Q Thank you, Gareth. Gareth, how long have you been with Ørsted?

A Six years in total, and 18 months on this project.
Q And are you working solely on Revolution Wind right now?
A That's correct.
Q Tell the council what you do as the Senior Electrical Package Manager for Revolution Wind.

A So I lead and manage the team of approximately 20 people who had performed the due diligence on all of the supply and installation of contracts and contractors. And that encompasses also the contract management and the document

Hearing - November 1, 2022

control itself that goes around it. And then I report directly to the project director.

Right. And, Gareth, given your position at Ørsted, do you know if Revolution Wind has selected a contractor yet for the installation of the cable?

A Yes, we have.
Q And who is that contractor?
A That's Nexans, $N-e-x-a-n-s$.
Q And why was Nexans selected?
A So we have a rigorous procurement procedure, a quality management plan for all our projects and all our procurement, actually, but in particular for this project starting in 2019 where were we had six preapproved cable contractors who could perform this work. They were taken through the process of three individual rounds, and at the end of the third round, two were taken forward to the last round, best and final, the battle you might have heard it called. The final part of that process is to go through with a fine-toothed comb the full evaluation, everything, technical, commercial, union labor, local content, et cetera. And at the end our evaluation came out with Nexans as being the leader of the two.

Q All right. Thank you. And let's talk about the cable route selection process. Are you familiar with the cable
route selection process for Revolution Wind?
A Yes, I am.
Q And describe how the route was selected for Revolution Wind's export cables in Rhode Island waters.

A So in the early development stages there is a preliminary route, and that preliminary route is then used to design the surveys that will be used to rehone that route into a viable route.

During that survey, first one was 2017, we performed a technical survey which is interacting with the seabed itself with drills and what we call cone --
(Interruption by the court reporter)
A -- cone penetration, which gives a feeling for the stiffness of the soils. And then there's a geophysical survey which then gives us a picture of the seabed, and we can understand where the boulders and other debris, et cetera, is, and then the magnetometer survey, which gives us information on potential munitions, as Kellan had pointed outer earlier.

All that goes to produce a ground model. The ground model is used to both procure and to put forward to the contractors so they can develop their techniques and their trenching machines.

And then, finally, after they have done their
further assessments, during the procurement stage and post-contract, now they can perform a final analysis, which will then give them the full methodology that will be used to install the cable.

Q Okay. So Nexans participated in the route selection process with Revolution Wind; is that correct?

A Yes. Both at procurement stage and post-procurement they're now involved in filing that route.

Q Thank you. And do you know how the seabed will be prepared in order for the cable to be installed?

A Yes, I do.
Q Could you explain that to the council? And, again, keep your voice up.

A Yeah. Sure. So first process we talked about here, boulders on the seabed that Mr. Skenyon pointed out very nicely before, we actually have 49 boulders which need to be cleared along the two routes in the 23 nautical miles. These are ranging in size from naught point 330 (verbatim) centimeters up to four, which are between 1 meter and 1.5 meters.

Q And how big is a meter?
A Three feet.
Q Three feet or so?
A Approximately, or 3.1. Yes, so we will need to clear
these boulders because we don't want them to come into the trenching machines. So how we do this is use a grab similar to an amusement arcade grab when you pick up a teddy bear, it lifts the boulder itself perpendicular to where we find it on the route approximately 10 meters away. We then deploy that so it's away from the trenching machine, which will pass through when we lay the cable itself.

That's the first process, we clear all the boulders. Once we've done that, we perform what we call a pre-lay grapnel run -- a pre-lay grapnel, $g-r-a-p-n-e-1 . A$ grapnel is like an anchor. In this particular scenario these anchors -- this anchor will have a tine, so that's the loop on the anchor itself.

Q Kind of what you have on a rake, a tine?
A A hook on rake almost, yes. 0.5 meters, 50 centimeters. We use that to drag through the seabed to the surface to clear any debris which may cause a problem to the plow or jetting tool, such items as ropes, or even logs which had floated down and subsequently sunk to the seabed. Because we don't want to get that caught in our machine when we've got a power cable in the machine itself.

So once we performed that particular activity, we then have a final survey, which is visual with an ROV,
remotely operated vehicle, which is a small submarine. It will have cameras and sonars, and it will give us a clear picture of the seabed. We can then give that to the masters on the vessels and say we're good to go and the seabed is clear.

Q And you talked about moving some boulders, and was it 49 boulders over the 23 miles that need to be moved?

A Yes, correct.
Q And then you mentioned the grapnel run?
A Uh-hum.
Q Gareth, have you read the Category B application that's before the council tonight?

A Yes.
Q And was there an another method of clearing the seabed mentioned in the Category B application other than the grapnel run?

A Yes. So during the application we haven't finalized our studies of seabed mobility, and we haven't finalized what techniques we'd use for laying and trenching the cable. So in order to keep that opportunity open, if there was some significant sand waves, we would need to clear them to allow the cable to be laid to a depth which would mean they wouldn't be exposed in the future. If you can imagine, a large sand wave would need dredging to clear

Hearing - November 1, 2022

it, so we now know that we don't need to do that, and the only technique we need to clear the seabed is the pre-lay grapnel run.

So there's no sand waves that need to be cleared in state waters; correct?

A That's correct.
All right. And what creates more disturbance to the sediment, the dredging machine that you would have used had there been sand waves or the grapnel run that you now can use?

A So most definitely the dredging machine to clear the sand waves.

Q Thank you. So I want to turn now to the actual installation of the cable in state waters, and what I would like to do is have you explain, if you can, how that will be done, but we'll take it in segments. And we'll start first with the landfall area which you heard about and Kellan spoke about. Talk about how the cable will be installed at the landfall area at Quonset Point? Be brief.

A Yes, sure. Well, actually, Mr. Skenyon explained it very well.

Q Yes.
A So we'll be using horizontal directional drilling, HDD.

We will drill from the shore side to the marine side, approximately 400 meters of drill. We will ream the hole so we'll make it a sufficient size for cable to be pulled into. And once that is completed, we will then pull in what we call the conduit, which is a polyethylene pipe. That polyethylene pipe is going to be manufactured on the north side of Quonset at port and towed around to site, and pulled through into the duct itself -- I'm sorry -into the bore hole itself to create the duct.

The duct is then sealed at both ends, and it is lowered in the seabed, so that for the small interim period between the completion of the HDD and the start of the export cable we will have a safe area within the Bay there.

Q Great. So once the HDD process is done, then what happens next on the marine side or the water side from the HDD pit out into the West Passage of Narragansett Bay? Let's talk about that next segment.

A Sure. So as you probably know, it's in shallow water there, so we can't bring in a larger cable installation vessel. We'll be using what we call a near shore barge. That barge, it moves on anchors, and it's also towed by an anchor handling tug. The barge will then be moved into position next to the $H D D$ duct, which will then be --
the seal will then be removed by divers. A rope is then passed through the duct, and a winch wire from the near shore, from the onshore side, will pull the cable through the duct.

We make sure that there's no sediment within the duct, and we're doing that by placing what we call a bell mouth, which it looks like a bell, and it's a fluted piece of steel which lifts the duct off the seabed.

Once you have installed it and secured it into the onshore side, we start to lay away with the near shore barge. As we start to lay away, we'll deploy what we call the jet plow. That is a trenching machine for the near shore area. The jet plow uses two saws to inject -(Interruption by the court reporter)

A -- saws, yes. And it fluidizes the sediment and creates a slim trench where the cable will fall into the trench. In fact, it's encapsulated in the machine itself, so it's placed on the bottom trench. The trench then collapses in behind, and the sediment settles back down on top of the cable itself.

The barge will move out just south of the Jamestown Bridge, taking approximately four days in total to do that piece of work. And then it will lay the cable on the seabed there, and leave it there partially buried so
it's away from any attrition from any outside forces until the main vessel will come back and pick it up at a later date. The barge then goes back to the second duct and does the exact thing all the way through, past the Jamestown Bridge.

And just one thing. The barge has our spare cable on for the operations period. It will then go to the Providence Port, our new facility there, as Kellan discussed, and offload that cable there and store it there for the duration of the project.

Q So, Gareth, before the barge comes up to Providence, it will leave the cable where it is. And that barge is needed on the northern side of the Jamestown Bridge because the water there is too shallow for the larger vessels; is that correct?

A That's correct, yes.
Q So then another vessel comes in just south of the Jamestown Bridge to pick up the cable; is that correct?

A Yes.
Q So please explain to the council that next step to the process for laying the cable?

A Yes, sure. So the next vessel, it's called the Aurora, as in borealis, and it will pick up the cable which is on
the seabed left by the near shore barge and take it on top of the deck of the vessel. We will then join the two cables, the one which is already on the vessel to the cable which has been picked up. And that needs to be a very clean environment, almost like the factory itself. And, actually, we use our experienced jointers to perform this work. They're specifically on the vessel to do this work because we want to make sure that every joint we do is as best quality as we can to prevent any potential risk in the future.

Once that's performed, and that takes seven days, the cable vessel will start to lay away, and it will lay the joint gently down on the seabed for trenching later. As the vessel pulls away, we'll deploy what we call a mechanical plow. Now that is a device which also encapsulates the cable through it and creates a trench in the seabed. And the way it does that is it has some jets to pre-fluidize the soil ahead of it. So it uses what is called a share, which is a common piece of steel on the plow which is a front edge like a knife, and it will cut through the seabed and create this trench. The way it moves forward is it's pulled literally by the vessel itself. The cable lay vessel has at this point two times 34 kilometers of cable on it, so it will go way past the
state boundary and lay that cable down. Once that is complete, we come back and pick up the second joint and do exactly the same thing.

Q Great. And that completes the installation of the cable at that point; correct?

A Correct.
So let's move on to another issue, and that is, are you familiar with the term target burial depth?

A Yes, I am.
Q And what does that mean here in regards to the Revolution Wind export cables?

A So, of course, you have heard before we have four to six feet target, which all our equipment is aimed to achieve, and in fact some areas slightly deeper, and our contractor is specifically engaged to perform that work to install the cable beneath that target.

Q Are there any areas where the cable will be buried deeper than six feet?

A Yes. So just at the entrance to the Bay we have the Narragansett traffic separation scheme. And we know we've got lots of activity, we have a lot of large vessels there, so our risk analysis shows that we should go slightly deeper than the target, the deepest CRMC target, and that is 2.5 meters or 8.2 feet.

Q So let's talk about what happens if the target of four feet is not met on cable depth. And before we go to that point, explain what burial means. It means below the seabed floor; correct?

A Yes.
Q And then you're measuring from the top of the cable to the natural seabed; is that correct?

A That's correct. So it's from the very top of the cable to the actual seabed level, which is where the trenching started.

Q So what happens if the cable is not buried to the target of four feet?

A So, again, we have a rigorous process, which is backed up by all of the procedures and the contract with the installation contractor. The first point of contact here is to look into the risk assessment, which we will do. That's an engineering document which takes into account all the shipping traffic and all the fishing activity, and also the seabed mobility studies that we've done. And we can then see if the risk of where the cable actually is, let's say for example it's three feet rather than four feet, if the risk is such that we do not need to go any deeper, then we would leave the cable at that depth. We don't want to necessarily trench something
where we know it's already at low risk, and by performing additional trenching, we can put it at risk by performing that trenching. Although that is at low risk itself, it's still something we would rather avoid if we know it's deep enough.

Q
So have you heard the term secondary protection?

A
Yes.
What is secondary protection in regards to these cables? Can I just take a quick step back?

Absolutely.
So the second part of the process actually is if we find we're not within that safe area of the risk that we've engineered, then we will place the machine called the capjet, c-a-p-j-e-t. This is a Nexans machine, trenching machine which uses a fluidization, again similar to the jet plow, but it's a much bigger, more powerful machine, and it moves on its own propulsion, that's based on the Aurora vessel. So that once we see that cable is not buried deep enough, we'll put that onto the cable, and we'll try to bury it deeper than that.

If we subsequently survey that and we see it's still not deep enough within that risk zone we talked about, then we will place secondary protection. And as secondary protection, as pointed out before, we mean
either flexible concrete mattresses, rock bags, which are polyethylene nets filled with rock, or rock berms, which are placed by a separate vessel onto the seabed. So you said a few minutes ago that you read the Category B application; correct?

A Yes.
Q And did you see in that application where Revolution Wind estimated approximately 10 percent secondary protection plus cable crossings?

A Yes.
Q So first let's talk about the cable crossings.
A Uh-hum.
Q Again, they've been described briefly before.
A Uh-hum.
Q But approximately how many cable crossings have you identified as of now?

A \quad So we have seven in state waters here.
Q And so you need to cross those cables, protect the other cables, whether they're owned by Verizon or other companies; correct?

A Yes, that's correct.
Q And then put your cable over that secondary protection?
A Yes.
Q And then protect your cable?

A Yes. So in order to create a positive separation between the two cables, if there was ever to be any scour, we'd place a rock -- a concrete mattress, a flexible concrete mattress, and we would lay our cable over the top of that, and on top of our cable we will also lay concrete mattresses.

Our cable is shrouded in steel wires, so it's protected between those two mattresses itself, and yet we have seven of these locations to undertake.

Q Okay. So seven crossings of other cables?
A Yes.
Q But then you'll have other potential areas where secondary protection is required; correct?

A Yes.
Q And the application estimated about 10 percent of the cable route would have such secondary protection; correct?

A Yes, it did.
Q Standing here tonight, what do you estimate, Gareth, for the secondary protection for the cable route?

A Our studies are showing it should be 5 percent and not 10 percent. That's because we have taken all the ground models we discussed, and the contractor has taken their new methodology and their plow and everything into
account based on the track record on the plow in these types of soil, and they have redefined that to give us an idea, also for planning purposes, of what the amount of secondary protection we might need.

Just bear in mind, the trenching machines are designed for this particular job, soils, et cetera. So it's only in the mitigation where we don't achieve that for other reasons that use that secondary projection. But you've been able, based on all the work that's been done, to cut in half the estimate on the amount of secondary protection; correct?

A Yes, that's correct.
Q So a few minutes ago you may have heard some questions about the cable itself and any armoring on the cable.

A Uh-hum.
Q Can you describe the cable generally and what it's made up of?

A Sure. So there's three individual coils, and the cross-sectional area is 800 millimeters of copper. These are in a trefoil, t-r-e-f-o-i-l, layer so that three cables are laid together and twisted together. There's also fiberoptic cable in there. And then on the outside of the whole cable we have armoring of both steel and polyethylene, which protects the cable and gives it extra
stiffness for installation purposes.
Q And do you know if there's any value to the twisting of the cable as you described it?

A Well, as Mr. Skenyon pointed out, it is a feature that can reduce EMF.

Q Thank you. So let's turn to the amount of time it will take on a per-day basis to install the cable. Earlier Megan testified to the construction schedule.

A Uh-hum.
Q But do you know, Gareth, how much cable is estimated to be installed on a per-day basis in state waters?

A Yes. So it's around five kilometers a day, which is two and a half to three nautical miles a day, which is fairly rapid.

You know, the type of trenching technique that we're using allows us to move at that sort of speed, 250 meters per hour.

Q $\quad 250$ meters per hour?
A Yes.
Q Thank you. And is the cable lay process is a 24-hour, seven-day-a-week process?

A Yes.
Q Okay. And why is that?
A There's a few reasons. So in the short term, we
obviously have a weather window to predict, and, you know, the further outside of that window you look at, the less -- the higher risk of some weather coming in. And if weather comes in, we have to stand with the cable or cut the cable and come back again. So we don't want to do that. So we always perform $24 / 7$ so we can be the most effective and efficient we can in that process. Of course we've got the TOY boundary to consider at the end --

Q Time of year?
A Time of year restriction. And we don't want to, you know, bump into that either. So the simple plan is we need to get in and lay the cable as fast as we can.

Now, if we were to let's say stop for a weekend or something like that, the cable will be set on the vessel, and, you know, we wouldn't want to cut the cable and come back again because of the joint, which takes seven days, and the quicker we can do this the better.

Q Okay. Is it customary in the industry, based on your experience, to lay a cable like the ones Revolution Wind will use on a 24/7 --

A Yes.
Q -- progress?
A Yes.

Hearing - November 1, 2022

Q Thank you. So, finally, Gareth, I want to turn to the operations and maintenance of the cable. What is anticipated for the operations and maintenance of the cable?

A So we'll develop a plan based on the permit requirements, and on top of that our own requirements for assessment of areas of where we know we have crossings and secondary protection. As we've already discussed here, the whole of the Bay is relatively benign in terms of the seabed mobility. There are some sun waves, and we've done engineer work that shows that these can range between . 25 of a meter and half a meter further out past the Rhode Island Sound there. So we're quite confident that we're going to bury it, and it's going to stay buried and not be exposed over its lifetime.

Of course, there's some significant storms, as we know, and we will assess them on a storm-by-storm severe weather event basis whether we would need to go back and potentially look at seabed protection, secondary protection.

MS. MAIN: Thank you very much. I have no further questions for Gareth Ellis.

MR. CHAIRMAN: Any questions from council members of Mr. Ellis?

MR. GAGNON: I have a question.
THE CHAIRMAN: Yes.
MR. GAGNON: So there are two cables; correct?
THE WITNESS: Correct.
MR. GAGNON: With two trenches and two trenching operations some distance apart?

THE WITNESS: Yes. The distance varies as we go through the Bay, because the engineers route around certain beaches and boulders, et cetera. We try to keep them within a reasonable separation, not using too much of the Bay.

MR. GAGNON: Do you have two trenching operations going on at the same time, where you use the same equipment?

THE WITNESS: The same vessel, yes. The near to shore barge will do one 9.7 kilometer route out to the Jamestown Bridge.
(Interruption by the court reporter)
THE WITNESS: I'll turn around, yes.
And then the main lay vessel will do one cable at a time, yes.

MR. IZZI: When you talk about the amount of time that it's going to the take to lay the cables, you said it will take four days for the barge to lay its cables.

THE WITNESS: Yes.
MR. IZZI: Is that for both of the cables that the barge has?

THE WITNESS: Each one will take four days.
MR. IZZI: So that is a total of eight days?
THE WITNESS: Yes.
MR. IZZI: You said the Aurora would take seven days to lay the cable south of the Jamestown Bridge to the turbines.

THE WITNESS: Correct, yes.
MR. IZZI: So you double that to take into consideration both cables, so it would take 14 days to lay the two cables.

THE WITNESS: Yes, but I would like to also add that we have to join the cables both together, and that's a seven-day period. So, in fact, one cable will take 14, and two will take 28.

MR. IZZI: All right. And the cable laying operation, part of it is digging the trench and part of it is laying the cable. Is that done simultaneously?

THE WITNESS: Yes, correct. We call it simultaneous lay and burial. And in both cases, the near shore barge and the main lay vessel, we have simultaneous lay and burial techniques. The cable actually is encapsulated

Hearing - November 1, 2022
through the machine and has what we call a depressor that sits on the back of the cable, which makes sure it goes into the trench, on the bottom of the trench.

MR. IZZI: Is there any anchoring of the cable?
THE WITNESS: Any?
MR. IZZI: Anchoring.
THE WITNESS: Anchoring.
MR. IZZI: Once it's in the trench, or does it just get buried with the sediment?

THE WITNESS: Yes. Its self weight takes it to the bottom of the trench as well at the depressor, and the trench walls collapse, and the sediment settles down on the cable itself behind the trench, but there's no physical anchoring of the actual cable.

MR. IZZI: And are you aware of supply-chain issues that other wind turbine companies, maybe Ørsted and other places are experiencing?

THE WITNESS: Oh, yes. Absolutely, yes.
MR. IZZI: Are supply-chain issues going to affect the schedule for the substation or the marine cable?

THE WITNESS: No. The issue that we're facing is planning around the multiple jobs that are going on and the limited amount of vessels in the U.S. capable of supporting the work. So that's ongoing work, but, you
know, there's no delay on this project whatsoever.
MR. IZZI: So you don't anticipate any issues in getting cables or getting the turbines themselves?

THE WITNESS: No, no. I mean, in fact, the cables are manufactured by Nexans in Charleston here in North Carolina.

MR. IZZI: South Carolina?
THE WITNESS: I'm sorry. South Carolina. Excuse my U.S. geography. It's great in Rhode Island, but further south, no. Yeah, so we've got our own quality managers within that factory, and they keep a 24 -hour view on the cable at the moment.

MR. IZZI: Thank you.
MS. HALL: I just have a couple of quick questions, back to your boulder relocation plan.

THE WITNESS: Yeah.
MS. HALL: I want to be clear on what you were saying with respect to where those are going in relation to essential fishing habitat, or, you know, just the areas that are really important relative to our commercial and recreational fisheries.

THE WITNESS: Okay. So our intention is to move the boulder only as far away as it won't impact the trenching machine. The trenching machines are approximately five

Hearing - November 1, 2022

meters, six meters wide. So we will aim to move it only ten meters from the center line of where we are trenching the cable. So this will mean that we'll be moving it to very similar locations to where it came from. So we're moving them perpendicular by ten meters.

MS. HALL: Right. So those areas have been surveyed relative to a fish habitat?

THE WITNESS: Yeah. So the whole sway, 50 meters of each route have been surveyed, and all the due diligence on the route and archeology and everything like that is, done, and we would only ever move a rock to a position in the known survey area.

MS. HALL: Thank you. I just had another question regarding something you said about -- you were talking about, I think it was during your discussion of the landfall location, and it was shortly after that relative to the those areas that we have discussed with secondary protection. You said if it can't go down four feet, if the risk is such that it is considered low risk. And I'm not clear on what is considered that risk is such versus low risk. Could you explain that?

THE WITNESS: Well, we use an industry standard engineering report called the Cable Burial Risk Assessment. The acronym is CBRA, $C-B-R-A$. This is used
to -- we take the ship traffic data for the whole area and the fishing activities, and we put them together into a risk matrix to understand, you know, the quantity of vessels and type of anchors that are moving across the cables during a certain period, and the same with fishing activities. So we know some areas where we've got neither of those are a very low risk. So if we only reach, say, three feet, we know that we don't have to go deeper because the risk of anything coming into contact with the cable is very low. Whereas we know in other areas, for example, the traffic separation scheme, we need to get that cable buried to the actual depth that is required to be buried because the risk is high.

MS. HALL: So what you're describing I think is risk for interaction of vessels and/or fishing gear with the cable.

THE WITNESS: Correct.
MS. HALL: But that doesn't address the risk that Justin was talking about with respect to EMF. I mean, that doesn't really address the presence of benthic species. I mean, I thought that one of the major issues relative to risk is when you can't go to the four to six feet deep.

THE WITNESS: Well, we bury to three feet, as

Mr. Skenyon pointed out, the risk is much lower, and obviously the risk is increasing slightly as we increase that depth.

MS. HALL: Did you say three feet?
THE WITNESS: Yes.
MR. SKENYON: So the estimates for the EMF I gave tonight were at three feet as a worst case that would not be mitigated. That was given as an estimate.

THE WITNESS: We have to imagine that these areas where we will not potentially reach that depth will only be small lengths of cable, because the machines themselves are designed to create that depth.

MS. HALL: All right. Thank you.
THE CHAIRMAN: Yes, Mr. Gomez.
MR. GOMEZ: You discussed the connections a couple of times now. How many? The connection cable to cable?

THE WITNESS: Yes, so the joint. So in the state waters there's only two, so one per cable, both to the south of Jamestown Bridge.

MR. GOMEZ: Are they different cables, or are they just the same?

THE WITNESS: No, the same.
MR. GOMEZ: The same cable. And that seems like a pretty critical operation. You explained it took quite a
bit of time, the conditions you're going to be under to do that.

THE WITNESS: Yes. The benefit of actually having Nexans manufacturing the cable and installing the cable is we have their factory experts to do that joint on the vessel. So it's really good for us, that the vessel itself is very much planned like their own factory.

MR. GOMEZ: Is it a fairly large vessel?
THE WITNESS: It's over a hundred meters long.
MR. GOMEZ: That's pretty big.
THE WITNESS: Uh-hum.
MR. GOMEZ: The only other -- so you have two, and you agree that's a critical operation.

THE WITNESS: Yeah, yeah.
MR. GOMEZ: The only other thing that I had was back on EMF. And it sounds to me -- a couple of issues -- and it sounds to me that what you're looking for EMF reduction is basically burial, as opposed to shielding inside the cable. It sounds like burial of the cable is pretty normal.

THE WITNESS: Yes. In every case, burial is best.
MR. GOMEZ: And you said 800 millimeters, the diameter.

THE WITNESS: 800 millimeters square is a

Hearing - November 1, 2022
cross-section of the copper.
MR. GOMEZ: That's pretty large.
THE WITNESS: Yeah, it's a big ole cable, like a dinner plate.

MR. GOMEZ: I did my math, it's like 30 inches. I had not envisioned that.

THE WITNESS: Yes. It's a very stiff cable. It's very heavy so it sinks into the trench.

MR. GOMEZ: So it's a benefit, but it seems like it makes transportation and stuff a little more difficult.

THE WITNESS: It's heavy, yeah.
MR. GOMEZ: Thank you.
THE CHAIRMAN: Any other questions from council members?

MS. MAIN: Thank you. My partner, Ms. Dieter, will present her next witness.

MS. DIETER: We would like to call Drew Carey.
(Interruption by the court reporter)
MS. DIETER: Maybe now is a good time for a break.
THE CHAIRMAN: We'll take a break.
(Brief recess)
THE CHAIRMAN: We're back on the record, and I just want the record to indicate that -- just for the record, Council Member Sahagian had to leave. He had a medical
emergency, family, but everything is okay, but he had to leave. We can proceed without him, we still have a quorum.

MS. DIETER: Mr. Chair, we'll call our next witness, Drew Carey.

Dr. DREW CAREY (DULY SWORN)
MR. DeSISTO: Please state your name and spell it for the record.

THE WITNESS: Drew Carey, D-r-e-w C-a-r-e-y.
EXAMINATION BY MS. DIETER:
Q Dr. Carey, where are you employed?
A

What is your responsibilities with that role?
A So I manage a team of scientists. The scientists collect data, study the seafloor and all the resources that depend on it.

Q
Could you briefly describe for the council your professional and educational background?

A Certainly. So my whole career has been spent studying the ecology of the seafloor. In order to do that I have a PhD in both marine geology and marine ecology. I have an academic career of research and teaching at Wesleyan

University in Connecticut, Woods Hole Oceanographic Institution and Stoney Brook University.

When I finished my academic career, I began here in Rhode Island as a consultant studying the effects of dredge material on the seafloor.

Q Have you performed during your career any studies within the area of Narragansett Bay and Rhode Island Sound?

A Yes. As part of that work and subsequent work, I've spent over three decades studying Narragansett Bay, Rhode Island Sound, Long Island Sound, and other parts of the world, and most recently, of course, offshore wind.

Q And what work have you done in connection with offshore wind?

A I started with the Block Island wind farm. We did a site assessment looking at the site of the turbines, the cable route, and advised Deep Water Wind at that time about the location of the cable and the turbines.

Q Have you previously testified before any regulatory bodies?

A Yes. The Connecticut Energy Siting Board, the Energy Facility Siting Board, and the Article 7 process in New York State.

Q And the Energy Facility Siting Board that you mentioned, that's the Rhode Island Energy --

A Yes.
Q -- Facility Siting Board?
A Correct.
Q Have any of these bodies recognized you as an expert in any field?

A Yes.
Q And in what field?
A As a marine ecologist.
MR. DIETER: Mr. Chair, I would ask the council to recognize Dr. Carey as an expert in marine ecology.

MR. DeSISTO: Well, typically we don't, for this agency, qualify experts. The fact that you have detailed his education and experience background is enough for the council to weigh his credentials when he renders opinion testimony.

MS. DIETER: Okay. Thank you.
BY MS. DIETER:
Q Have you worked on the Revolution Wind project, Dr. Carey?

A Yes, I have.
Q And when did you begin work in connection with the Revolution Wind project?

A Well, I started as soon as it was -- the lease was approved in 2013.

Q And what did that work involve?
A So we began with site assessment work, that includes benthic assessment work, essential fish habitat monitoring. Fish, recreational fishing, and a few other smaller elements, but those are the primary ones.

Q And has that work that Inspire Environmental performs been incorporated into the application that's before the council this evening?

A Yes. For the Category B application there's a technical report on benthic assessment, a technical report on essential fish habitats and one on commercial and recreational fishing. For each of those my staff collected data, wrote the reports, and I managed and reviewed each of the documents.

Q You mentioned that one of those reports was an essential fish habitat report?

A That's correct.
Q In that report the statement is made that the installation of cables in Narragansett Bay could disturb animals and that as much as one to three years could be required for recovery. How did this recovery affect fish resources in the vicinity of the export cable?

A Well, that recovery estimate, as I think Mr. Skenyon indicated, it could take several years for the seafloor,
and the seafloor is a mixture of sediment and animals. But we've been studying that process for many decades, and initially, there's actually lot of food on the surface as a result of sediment disturbance. There are three stages. The first stage is just almost weed like little tiny animals that show up, they're fish food. And the second stage are a little bit larger, maybe about an inch long, they form small tubes, and that's also very heavily grazed by fish.

So fish move in, literally, immediately. There's animals rendered by the disturbance that are available, and then the recovery. And then eventually in that second stage, the fish graze them. We often find them in fish stomachs.

And then there's a third stage where there is much deeper burrowing organisms, and that's in the sort of one year and slightly longer phase.

Q So I want to break this down a little bit if we can.
A Uh-hum.
So you talked about sort of this phased recovery. How long do those different phases take?

A Sure. So there's a very well established model of succession that's similar to what you might see in a field that's cleared. The first stage takes weeks. So
little teeny animals are almost hard to see. That takes anywhere from one to six weeks for them to appear.

The second stage, those larger organisms, typically we would see them in three to six months, would begin to appear during that phase, or sometimes as early as one month.

Then following that, anywhere from nine months to a year we begin to see evidence of these deeper burrowing organisms. They move in from the side of a small area, or they will settle and begin to grow, and they burrow very deeply into the sediment.

So total, year, year and a half to that level of completion.

So this year to year and a half compared to the one to three years that's referenced in the report, would it be fair to characterize the one to three year range in the report as conservative?

A Well, yes, that's a very conservative estimate we put in the report. In dynamic environments like Narragansett Bay or even parts of Rhode Island Sound, the seafloor is subjected to storms and other sort of disturbances, and that can sometimes accelerate the process by bringing the animals in, and sometimes it can slow it down. So there's a bit of a range.

Q You say that within six weeks, or in those first six weeks after the disturbance, the tiny organisms that can be fish food will be returning to the area.

A Uh-hum.
Q So when do you expect fish can return to the area after the disturbance?

A So in the process that was described of fluidizing the sediments or physically moving them through, it's somewhat similar to dredging, for instance, in the Providence River. And what happens there is the animals float up to the surface that are in the sediment, and the fish move in right away to begin feeding on those. We have done studies watching that happen. It's sort of as soon as the sediments settle down, the fish come in. So, days.

Q Thank you. I want to switch to a different topic now.
A Uh-hum.
Q Are you familiar with the term area of particular concern, or APC as it's used in CRMC's Ocean Special Area Management Plan?

A Yes, I am.
Q And are you familiar with the recreational boating APC that's identified in the Ocean SAMP?

A Yes, I am.

Q How does the area identified in the recreational boating APC relate to recreational boating?

A
So I was a participant in the Ocean Special Area Management Plan, as some of you know, in the stakeholder meetings, the public meetings following that through. And there was one section which was recreational boating and tourism, and in that group, Dr. Robin Wallace from Newport, he was the head of the state yachting commission, he provided the OSAMP with a list of seven what are called buoy yachting races. So these are offshore races defined by buoys that yachts would transit around. And so those seven races were put into Chapter 6, and then a figure was put in which corresponded to the location of those buoys. And that area that's in the SAMP corresponds to that recreational boating APC.

Q
I would like to pull up, if I may, we previously submitted as Exhibit C to Revolution Wind's request for a special exception. Dr. Carey, are you familiar with this figure?

A Yes. I supervised our geographical information specialist to prepare this map.

Q And could you describe for the council generally what this shows?

A Sure. I'll use a pointer to make sure that I'm clear. So I think to most of you, you recognize the Rhode Island coastline here and the land masses in sort of a slight yellow/green.

This is the OSAMP boundary, so the OSAMP was concerned with the offshore area.

And that's the red line you're pointing to?
A I'm sorry. The red line, for the stenographer. Then there is a dotted or dashed line in black, which is the state water boundary. Then inside the state water boundary there are a series of pink circles. These correspond to the recreational boating APC. There is a blue polygon, or sort of a long fat line, that is the cable corridor extending from the state boundary at the dashed line all the way to Quonset inside the Bay.

Q And, Dr. Carey, approximately how large is the recreational boating APC?

A So as you can see the legend here, the recreational boating APC is a little over 16,000 acres.

Q And it appears in this figure that there's a portion of the export cable that is going to overlap or go through the recreational boating APC; is that correct?

A That's correct. And you can see that by combining the blue with the pink, you get a purple polygon associated

Hearing - November 1, 2022

with that overlap.
Q And approximately what percentage of the recreational boating APC will be touched by the export cable corridor as shown in this figure?

A So within the state waters that is slightly over
10 percent of the whole recreational boating APC in state waters.

MS. DIETER: Thank you. I don't have any further questions for Dr. Carey.

THE CHAIRMAN: I have a question. Did you say 10 percent?

THE WITNESS: Yes, 10 percent. So the dark purple.
THE CHAIRMAN: The purple area.
THE WITNESS: Yes.
THE CHAIRMAN: Represents 10 percent.
THE WITNESS: Uh-hum.
THE CHAIRMAN: Thank you. Any questions from council members?

THE WITNESS: Yes?
MS. HALL: Relative to area, the buoy area and the overlap and the construction timing, if you could just elaborate a little bit. I understand 10 percent spatially, but what are you talking about in terms of that area relative to those activities that you were
involved in identifying the SAMP and the OSAMP and also the scheduling that we heard from before?

MS. DIETER: Madam Council Member, if I may, our next witness is going to address that in greater detail. THE WITNESS: I'll answer as best I can. I didn't provide the information. It was Dr. Wallace. But those races occur between June and September each year, and I think the next witness will probably talk about what was said. Megan mentioned that activity would be from October to I think to November. Is that correct?

So the active installation occurs after the end of the yachting season.

MS. HALL: I have one more question about the recovery relative to fish returning, et cetera.

THE WITNESS: Yes.
MS. HALL: Does that phased recovery change relative to the areas that are in the secondary protection?

In other words, to the benthic community, is that time frame a little bit different for those areas for that 10 percent or 5 percent?

THE WITNESS: Well, yes, of course. So the recovery that I'm talking about is in what we would call soft sediment, silt, sand, mud, that kind of things. It's a very specific kind of recovery process.

If you place rocks or hard material on the seafloor, it's a different succession. We've been studying that at Block Island and at the coastal Virginia facility. Within six months you get a covering of algae and other material, if it's shallow enough, on that material if it's suitable. So if it's steel or rock or certain forms of concrete, then other organisms begin to attach. But because it's hard, it's a different group of organisms, and it has a little bit different succession.

MS. HALL: Okay. Thank you.
THE CHAIRMAN: Any other questions?
Thank you.
MS. DIETER: We will call or next witness Ross Pearsall.

MR. DeSISTO: Please raise your right hand.
ADRIAN ROSS PEARSALL (DULY SWORN)
MR. DeSISTO: Please state your name and spell it for the record.

THE WITNESS: Adrian Ross Pearsall. A-d-r-i-a-n R-o-s-s P-e-a-r-s-a-l-l.

EXAMINATION BY MS. DIETER:
Q Ross, where do you work?
A Drsted North America.
Q And what's your position at \varnothing rsted?

A I am the Fisheries Relations Manager.
Q How long have you been a Fisheries Relations Manager with Ørsted?

A Three years.
Q And what are your responsibilities in that role?
A Very quickly, I oversee a group of five people that conduct outreach across our portfolio. Could you describe briefly for the council your relevant professional experience?

A Sure. Before Ørsted I worked for NOAA in the Office of National Marine Sanctuaries as a policy analyst in the conservation policy and planning department. I run a community supported fishery in Rhode Island. I've worked with the Rhode Island Charter and Party Boat Association determining what their membership base was as part of their Block Island mitigation package.

Q And what's your educational background?
A I obtained my bachelors in government, and after that went on to get my JD, and ended up in Rhode Island to get my masters in marine affairs.

Q Do you have any additional professional certifications?
A I do. I'm a licensed attorney in Pennsylvania, and I also obtained my 100-ton mariner's credential, which is colloquially known as a captain's license.

Q So based on your experience, are you familiar with recreational boating that occurs in Narragansett Bay and Rhode Island Sound?

A $\quad \mathrm{I}$ am.
Q What types of activities are the focus of recreational boating here?

A It really ranges from everything from sightseeing to day sailing to sail racing to just pleasure cruising. Based on your experience, what is the recreational boating season in Narragansett Bay and Rhode Island Sound?

A The height of the season is Memorial Day to Labor Day. There are shorter seasons on either side of those, and generally a hard stop between -- hard dates of in on May 1 and out by November 1.

Q Why out by November 1?
A That's generally tied to moorings and docks in your contract. When you rent one of those, you have hard timelines to be out by November 1.

Q So I want to pull up figure 3.2-3 from the application. Are you familiar with this figure?

A I am.
Q Could you identify for the council where the export cable is on this particular figure?

A Sure. It's the same as we've seen before. It's this purple/red line that starts in Quonset, goes down the West Passage in between Jamestown, Saunderstown, Narragansett, and then out into the ocean.

Q Based on your experience, are there particular areas of Narragansett Bay and Rhode Island Sound that are popular for recreational fishing -- excuse me -- recreational boating?

A I would say that all of it is pretty popular, but there is a larger focus on the Newport area.

Q And the Newport area is in the East Passage?
A It is.
Q And where is that in relation to where the export cable is going to go?

A It's on the other side of Jamestown.
Q And are you familiar with the proposed construction schedule for the export cable?

A \quad I am.
Q And you heard Megan's testimony that the export cable is going to be installed in late October and November of 2024 .

A That's correct.
Q So based on your knowledge of that construction schedule and your familiarly with recreational boating in and
around Rhode Island Sound, do you expect export cable construction to have anything more than a minimal impact on recreational boating?

A No, I do not.
Q And are you familiar with sailboat raising in and around Narragansett Bay and Rhode Island Sound?

A I am.
Q What's your experience with sailboat racing?
A Well, I've been racing on Narragansett Bay since I was a teenager, but also as part of earning my captain's license, you need to have a requisite number of days at sea. In my case it was 720 days. And most of that was earned on a sailboats.

Q And does your role at Ørsted involve any outreach to the sailboat community?

A It does. We are affiliated with Shields Fleet 9, which is based in Newport, Rhode Island, and tends to race inside the Bay. We've also hosted numerous sailors at our simulator.

Q Are you familiar with buoy racing that occurs in and around Rhode Island Sound?

A \quad I am.
Q And where does that buoy racing primarily occur?
A Buoy racing tends to occur in the Bay itself, but also in

Hearing - November 1, 2022
the shaded circles here.
Q And when you say in the Bay itself, are you talking about the East Passage?

A In the East Passage, yeah.
In the shaded areas, are those what Dr. Carey identified previously as the recreational boating APC?

A They are.
Q
What time of year does buoy racing typically occur?
In the height of the season, at Memorial Day to Labor Day is the bulk of it. There are a few races on the outside of that, but everything generally stops by Columbus Day.

Q You said everything generally stops by Columbus Day?
A That's correct.
Q And so given that export cable construction is going to be at the end of October and November, do you anticipate anything more than minimal impacts to buoy racing?

A I do not.
Q In a typical calendar year, how many distance races pass through Narragansett Bay or Rhode Island Sound?

A Typically one to three.
Q And when do those races, those distance races typically occur?

A They tend to occur earlier in the season around June.
Q Are you familiar with the Volvo Ocean Race?

A I am.
Q And will the Volvo Ocean Race be affected by export cable construction?

A It will not.
Q Why not?
A Because it's making a stopover to Newport East Passage in May of 2023.

Q And it will not be stopping there to your knowledge in 2024?

A It will not.
Q If you look at that figure, can you point out those dashed red lines that are at a diagonal for the council?

A Sure. And I'm assuming you mean these three?
Q Over on the left, yes.
A Yes. So these three dashed lines over on the left are all related to the Annapolis to Newport race.

Q So generally those red dashed lines refer to distance sailing races?

A Yes.
Q And you said the three furthest to the left refer to the Annapolis to Newport race?

A Yes.
Q How do you know that?
A Because these tracks are actually on the Northeast Ocean

Data Portal, and you can go there to click on the tracks and see what tracks correspond to which race.

Q
I want to pull up briefly here what we marked as
Exhibit B to Revolution Wind's request for a special exception. Are you familiar with these images?

A Yes.
Q And what are they?
A Those are screenshots from the Northeast Ocean Data Portal.

Q What do they show -- oh, how do you know what they are?
A Oh, the red lines?
Q No. The images themselves.
A Because I took them.
Q You took them?
A Yes.
Q And what do these particular screenshots show?
A They do show a multitude of distance races, but the ones highlighted in red are those three Annapolis to Newport race routes.

Q Will the Annapolis to Newport race be affected by export cable installation?

A No, it will not.
Q How come?
A Because it is occurring in 2023, and it's a biannual
race.
Q So it will not be occurring in 2024?
A That's correct.
Q Are you familiar with the Newport to Bermuda race?
A I am.
Q Will the Newport to Bermuda race be affected by export cable construction?

A Not, it will not.
Q How come?
A Because that occurs in June.
MR. DIETER: Thank you, Ross. I don't have any more questions for Mr . Pearsall.

THE CHAIRMAN: Any questions from council members?
Okay. Thank you.
MS. DIETER: We will call our next witness, who is Kyle Cassidy.

MR. DeSISTO: Please raise your right hand.
KYLE CASSIDY (DULY SWORN)
MR. DeSISTO: Please state your name and spell it
for the record.
THE WITNESS: Kyle Cassidy, K-y-l-e C-a-s-s-i-d-y.
EXAMINATION BY MS. DIETER:
Q Kyle, where do you work?
A I work for Ørsted.

Q What's your role with Ørsted? What are your responsibilities in that role?

So for my role at Ørsted I manage all the fisheries related science projects that we have going on across the project portfolio. So that's not only Revolution Wind, but it's all the leases we have that are actively in development.

Could you briefly describe for the council your relevant professional background?

A Yeah. So I got my bachelor's degree in biology, and I had my master's degree from SMAST, and the focus of my thesis was a ventless trap survey in Buzzard's Bay -(Interruption by the court reporter) THE WITNESS: Ventless trap.

A And then I had been working for SMAST for about almost ten years prior to my position at Ørsted. There I was a program manager, so I led all the fisheries related research that we did under Dr. Kevin Stokesbury. We worked cooperatively with the a fishing industry on a number of different fisheries, primarily the Atlantic Sea Scallop fishery, the offshore lobster fleet in Massachusetts, as well as the ground fish fishery in the Gulf of Maine.

Q Are you familiar with the Revolution Wind Fisheries Research and Monitoring Plan?

A Yes, I am.
Q And what surveys does the plan propose for Rhode Island state waters?

A So in state waters DEM is going to run a ventless trap survey along the cable corridor route.

So this is a partnership between Revolution Wind and RIDEM?

A Yes.
Q And what kind of survey did you say it's going to be?
A It's a ventless trap survey.
Q What species are targeted by this survey?
A The primary target species of the ventless trap survey is lobster, with Jonah crab as a secondary cause species.

Q So how long is this survey anticipated to run?
A So in total the DEM survey is going to run about seven years.

Q And how frequently is it going to sample?
A They're going to sample twice per month, every month.
Q Was this ventless trap survey designed to provide an assessment of commercially and recreationally targeted species in the area of the export cable?

A Yes, it was. Rhode Island DEM had significant outreach
and input from stakeholders and industry members to help develop this survey, which they felt would accurately represent the commercial and recreational species in the area.

Q And those are the species you identified earlier.
A Yeah. American lobster and Jonah crab.
Q When do you anticipate Revolution Wind's ventless trap survey is going to start?

A We anticipate that it's going to start in the winter, early winter 2023.

Q So when you say winter, we're talking December or January?

A From December through January, yeah. It would be the start of winter.

Q December of 2022 or January --
A '22/'23, yeah.
Q You heard Megan's testimony earlier that export cable construction will occur in October and November of 2024?

A Yes, I did.
Q So how far in advance of construction is this survey going to be starting?

A In total we estimate we're going to have about a year and half, maybe a year and three-quarters worth of pre-construction data.

Hearing - November 1, 2022

Q Why is it that the ventless trap survey isn't going to start until either December 2022 or January of 2023?

A The initial plan start date was over the summer. We just had delays we encountered along the way with regard to Rhode Island DEM's significant outreach efforts and their planning with the industry to develop this survey, and then coordinating with us to get a finalized and agreed upon contract. And then there were supply-chain issues associated with DEM acquiring the traps they needed to conduct the survey.

Q Can you say a little bit more about this outreach to the fisheries community?

A Yes. So DEM, it was about a year, I think, they spent with outreach to the fishing industry and other stakeholders to get buy-in for the survey so they could develop a study that they felt and the community felt would accurately represent the question at hand, which is to determine if there was going to be a change in population over time as a result of the export cable installation.

Q And were there supply-chain issues that contributed to the delay as well?

A Yes, there was. From when DEM start ordering traps, they had a delay immediately. And it's not just limited to

Hearing - November 1, 2022

them, other lobster fisherman and industry members have also seen a delay in acquiring traps as a result of the Covid-19 supply-chain issues.

Q And those are the traps required to actually run the survey?

A Yes, that's correct.
Q Are there existing survey programs that assess commercially and recreationally targeted fisheries species in the area of the export cable?

A Yes. So DEM has been running a ventless trap survey consistently since 2006 to the present, and it uses the similar survey protocols that they proposed to use for this survey.

Q So this is also a ventless trap survey?
A Yes, it is.
Q And what is the RIDEM ventless trap survey designed to capture primarily?

A It's designed to capture lobsters, and they also do some -- get some bycatch with Jonah crab.

Q You said it has a similar sampling methodology to what RIDEM --

A Yes, similar sampling methodology. They both sample twice per month. The difference would be that the RIDEM survey samples June, July, and August, the summer months,
which is the height of lobster season. And this survey is designed to run year-round.

Q So the preexisting RIDEM survey, what geographical areas does that cover?

A It's a stratified random survey. They randomly select stations every year from different strata. But it equally samples the Narragansett Bay area, the Rhode Island Sound area, and the Block Island Sound area.

Q And so it covers the area the export cable is going to be going through?

A Yes.
Q In your opinion, with respect to lobsters, does the existing RIDEM survey provide a reasonable supplement of pre-construction data to what the Revolution Wind survey is going to capture?

A Yes, I do believe it does.
Q Can you tell the council why?
A So when we designed, or when DEM designed the survey for Revolution Wind, they did a power analysis, which is a statistical analysis to determine how many samples that you need. Through that analysis and our proposed sampling method, we're sampling a significantly higher amount with the proposed study along the cable corridor route than with the DEM state survey sample, so we'll
still be able to detect a change in the population with statistical robustness.

Q So notwithstanding the slightly delayed start, the Revolution Wind survey in collaboration with RIDEM is still going to be able to accomplish its intended purposes?

A Yes.
MS. DIETER: Thank you. I don't have any further questions.

THE CHAIRMAN: Any questions?
MR. GOMEZ: It sounds like you are focusing primarily on lobsters rather than white catch, but the lobster population, and DEM can maybe help on this, but this year they've had a terrible, terrible year. Last year was a good year. So it's really an up-and-down thing. But it appears from commercial lobster fisherman that I deal with, talk to, the lobster -- the centroid of the lobster masses moved over a hundred miles away from here. So it seems that's that a species we're going to rely on less and less and less. I would worry more about -- sea bass have really come in, and I'm not sure if that's a commercial fishery or not, and I don't see where any work we're going to do would harm that. But maybe you could comment a little bit on shellfish, scallops,
oysters those types of beds, which it sounds like the material you're running don't raise scallops. The scallops are offshore. Maybe not so much oysters. Oysters are probably better near shallow water. Are you looking at those at all?

THE WITNESS: Yeah. So at year-one and then post-year as recommended by Cat B there's a benthic habitat assessment.

MR. GOMEZ: A what?
THE WITNESS: A benthic habitat assessment, and that assessment will look at the species that dwell in that area.

MR. GOMEZ: The shellfish.
THE WITNESS: Yeah, the shellfish.
MR. GOMEZ: Yeah, but what are you looking for there, just a disturbance that would occur because of the lying of the cable?

THE WITNESS: In the benthic habitat assessment?
MR. GOMEZ: Yeah.
THE WITNESS: That will be looking at the population at time point zero, so when it is installed, and then it will look at it over time through -- I forget what the time frame is of it, but it is staggered.

MR. GOMEZ: But it's being done?

THE WITNESS: It is being done. There is an assessment.

MS. HALL: I just want to follow-up on that question, because I am a little unclear on 1.5 year pre-construction survey, which it sounds like -- I mean, that is ventless traps relative to the Jonah crab and lobster. Just to follow-up up on my colleague, I'm still not clear on the pre-construction type of survey that you're doing in the corridor relative to those other species, not just mollusks, but also herring fishery and flounder fishery. What kind of pre-construction surveying in the corridor are you doing? And I'm sorry if I missed when you explained it.

THE WITNESS: Yeah, so the ventless trap is the only proposed survey pre-construction in the corridor. And this was not something that we just directed. DEM designed and came up with the study collectively and then had community engagement. So that is what they determined was the most appropriate survey to sample the species within the Bay.

MS. HALL: So there's no pre-construction survey in the corridor for the presence of other species that are going through that area.

THE WITNESS: No, aside from bycatch within the
lobster trap.
MS. HALL: Right, aside from bycatch.
THE WITNESS: Yes. Which they have historical bycatch from the DEM survey as well, so you can have a relative estimate with that.

MR. GOMEZ: Just to follow-up on that if I may. It seems that the area that we're talking about would be good flounder-fluke type area, and I would expect that would be something you really want to look at. It's a pretty commercial fish. And you get -- some of this area you get near some of the trap fisherman and stuff like that. But the fluke fishery, both from a recreational and commercial standpoint, it's pretty important, but it doesn't sound you're looking at that at all.

THE WITNESS: No. The focus of the fluke, yeah, was not part of that, the proposal from DEM.

MR. GOMEZ: It does sound like the time frame that Robin had, the time frame for doing these things didn't coincide with the fluke fisheries, but it is a very commercially viable and recreational fish that you might just think about.

THE WITNESS: Yes. Thank you. I appreciate it.
THE CHAIRMAN: Any other questions?
Thank you.

MS. MAIN: I believe that concludes our presentation of witnesses.

THE CHAIRMAN: What else do you have in looking, planning ahead?

MS. MAIN: Sure. My understanding, subject to again CRMC staff and council's desires, is that on November 22 nd, which is our next hearing, there will be discussions and testimony put forth on mitigation. So we'll have several witnesses on that aspect. And then we will present to you our arguments on the special exception, presumptive approval on the recreational areas of particular concern, and the variance on the baseline monitoring.

THE CHAIRMAN: Okay. So I think we're in good posture that we can end for this evening.

MS. MAIN: As you wish, yes.
THE CHAIRMAN: And then recommence our hearing on November 22.

Any last questions from council members before we do that?

Yes, Steve.
MR. IZZI: I have a question for the Chair. Are we going to have objectors testify on the 22 nd as well?

THE CHAIRMAN: I think public comment will be

Hearing - November 1, 2022

scheduled for that day as well.
Just for completeness, I'll entertain a motion to continue this matter to our next date for this matter, which would be November 22 nd. Someone want to make that motion?

MR. GAGNON: So moved.
THE CHAIRMAN: Motion has been made. Seconded?
MR. GOMEZ: Second.
THE CHAIRMAN: All those in favor say "aye."
(All members present responded "Aye")
THE CHAIRMAN: Opposed?
(No reply)
THE CHAIRMAN: Motion carries.
I would entertain a motion to adjourn this meeting.
MS. McGOVERN: I'll make a motion.
THE CHAIRMAN: Motion made, and seconded. All in favor say "Aye."
(All members present responded "Aye.")
THE CHAIRMAN: Motion carries.
(The proceedings concluded at 9:06 p.m.)

Hearing - November 1, 2022

CERT IF I C A TE
I, Linda M. Cordeiro, a Notary Public in and for the
State of Rhode Island, hereby certify that the foregoing
pages are a true and accurate record of my stenographic
notes that were reduced to print through computer-aided
transcription.
In witness whereof, I hereunto set my hand this 8th
day of November, 2022.
LINDA M. CoRDEIRO, NOTARY PUBLIC
My commission expires on $1 / 17 / 25$

	;69:21;	agree (2)	62:3	14,19,22;10:19;11:11,
A	,	10:23;85:13	analysis (11)	;12:12,14;14:2;
	actua	agreed (5)	15:13;24:12;30:3,	1:15;23:12;27:1
able (8)	64:13;70:9;80:14;	10:24,24;20:9,22;	0,13,13;61:2;69:22;	33:13,16,21;37:3;
13:22;15:14;24:18;	83:12	110:7	112:19,20,21	41:6,7,11;42:9,12;
27:5;43:12;74:9;	actually (14)	agreement (8)	analyst (1)	51:21,24;52:3,5,8,10;
113:1,5	$5: 8 ; 24: 17 ; 28: 20$ $50 \cdot 12 ; 61 \cdot 16 ; 64$	10:20;11:11;39:10,	99:11	63:11,15,17;72:5,7
above (2)	59:12;61:16;64:21,	11,14,19;43:21;45:17	analyze (1)	73:15;90:7,9;100:20
21:3,3	68:6;70:21;71:11;	agriculture (2)	15:10	application's (1)
absolutely (3)	$79: 24 ; 85: 3 ; 91$ $104 \cdot 24 \cdot 111: 4$		ancestors	$10: 4$
20:8;71:10;80:18	$\begin{aligned} & \text { 104:24;111:4 } \\ & \text { add (2) } \end{aligned}$	$\begin{array}{\|l} \text { agriculturists }(\mathbf{1}) \\ 20: 2 \end{array}$	46:5 anchor (5)	$\begin{array}{\|c} \text { applied (1) } \\ 51: 17 \end{array}$
$\begin{aligned} & \text { abstaining (1) } \\ & 6: 15 \end{aligned}$	$\begin{aligned} & \text { add (2) } \\ & 52: 12 ; 79: 14 \end{aligned}$	$\begin{array}{r} 20: 2 \\ \text { Ah (1) } \end{array}$	$\begin{array}{\|l\|} \text { anchor (5) } \\ 25: 8 ; 62: 12,13,14 ; \end{array}$	$\begin{gathered} 51: 17 \\ \text { appreciate (1) } \end{gathered}$
academic (2)	additional (2)	37:15	65:23	116:22
87:24;88:3	71:2;99:21	ahead (3)	anchoring (4)	appreciated (1)
accelerate (1)	address (8)	31:20;68:18;117:	80:4,6,7,14	33:15
92:22	17:6;18:2;34:4	$\operatorname{aim}(1)$	anchors (3)	approach (1)
$\underset{6: 5}{\operatorname{accept}}(\mathbf{1})$	$\begin{aligned} & 38: 12 ; 52 \\ & 20 ; 97: 4 \end{aligned}$	$\begin{gathered} 82: 1 \\ \text { aimed (1) } \end{gathered}$	$\begin{aligned} & \text { 62:13;65:2 } \\ & \text { and/or (2) } \end{aligned}$	appropriate (1)
access (4)	adds (1)	69:13	7:22;83:15	115:19
8:13,18;13:9;53:3	42:14	algae (1)	angle (1)	approval (
accomplish (2)	adieu (1) $34: 14$	98:4	35:2	:2;22:9;40:
20:20;113:5	34:14 adjourn	align (2) 54:7; a5:4	animals (7) 90:20;91:1,6,1	$117: 11$ approved (3)
40:15;54:8;70:17;	118:14	Allen (1)	92:1,23;93:10	22:15;39:12;89:24
74:1,	ADRIAN (2)	33:6	Annapolis (4)	approximate (2)
accumulate (1)	98:16,19	allocated	104:16,21;105:18	44:15;53:13
29:10	$\begin{array}{r} \text { A-d } \\ 98 \end{array}$		20	approximately (22)
$\begin{aligned} & \text { accurately (2) } \\ & 109: 2 ; 110: 17 \end{aligned}$	advance (2)	$48: 12$	28:4;29:24	$15 ; 37: 9,20,23 ; 38: 4 ;$
achieve (5)	13:1;109:20	allow (2)	anticipate (7)	42:24;44:7;56:18;
14:1;15:24;25:9;	advised (1)	7:22;63:22	9:18;27:14;30:20	8:21;61:24;62:
69:13;74:7		$21 \cdot 5 \cdot 75 \cdot 16$	81:2;103:15;109:7	$65: 2 ; 66: 22 ; 72: 8,1$
$\begin{aligned} & \text { achieved (1) } \\ & 7 \cdot 23 \end{aligned}$	$\begin{gathered} \text { Advisory (2) } \\ 10: 9,10 \end{gathered}$	$\begin{aligned} & \text { 21:5;75:16 } \\ & \text { almost (6) } \end{aligned}$	anticipated (2) $77: 3 ; 108: 16$	81:24;95:16;96:2 aquatic (1)
achieves (1)	affairs (2)	19:7;62:16;68:5	apart (1)	26:17
13:17	50:15;99:20	91:5;92:1;107:16	78:6	arcade (1)
achieving (1)	affect (3)	along (11)	APC (12)	62:3
19:4	25:3;80:19;90:21	22:3,7;27:1;29:24;	27:20;93:19,22;	archeology (1)
acquiring (2)	affected (7)	38:5,9;45:15;61:17;	94:2,16;95:12,17,19,	82:10
110:9;111:2	20:4,14,14;23:6; 104•2•105.20:106:6	108:7;110:4;112:23	22;96:3,6;103:6	area (55)
acres (2)	104:2;105:20;106:6	alter (1)	apologize (1)	7:13,14;13:5,
$7: 20 ; 95: 19$ acronym (1)	affiliated 102:16	alternating (1)	45:4 appear	$\begin{aligned} & 14: 18 ; 19: 15,18 ; \\ & 21: 24: 22 \cdot 7: 23: 16 \end{aligned}$
$\begin{gathered} \text { acronym } \\ 82: 24 \end{gathered}$	affirm (1)	7:7	$92: 2,5$	$26: 13 ; 27: 4,15 ; 34: 8$
acronyms (1)	33:19	Although (1)	appears (2)	37:4,7;56:11,12,16;
51:6	again (20)	71:3	95:20;113:16	64:17,19;65:13;
across (5)	5:3;6:21;31:22; 35:6:37:7:49:15.51:6,	always (4)	applicant (39)	66:13;71:12;74:19;
8:11;22:5;83:4	$\begin{aligned} & 35: 6 ; 37: 7 ; 49: 15 ; 51: 6, \\ & 9 ; 54: 15 ; 55: 10 ; 56: 11 \end{aligned}$	$\begin{aligned} & 17: 11 ; 18: 22 ; 25: 1 \\ & 76: 6 \end{aligned}$	8:21,23;9:24;10:6, 13,14;11:9;13:4,22;	$\begin{aligned} & 82: 12 ; 83: 1 ; 88: 7 ; 92: 9 \\ & 93: 3,5,18,19 ; 94: 1,3 \end{aligned}$
Act (1)	$16 ; 57: 17 ; 61: 12$	ambitious (2)	14:13;15:9,20,23;	15;95:6;96:13,20,20,
48:2	70:13;71:15;72:13;	38:18,24	16:14,19;17:5,14;	24;101:10,11;108:23;
action (1)	76:5,17;117:5	America (1)	18:5;20:7,9;21:6;	109:4;111:9;112:7,8,
7:1	agency (2)	98:23	22:2,11,15,23;23:8,	8,9;114:12;115:23;
active (1)	52:7;89:12	American (1)	20;24:5,10,11,12;	116:7,8,10
97:11	agenda (3)	109:6	25:16,18,23;27:19;	areas (21)
actively (1)	5:8;6:1,23	among (1)	30:3,14;33:3;36:3	12:13;15:14;27:7;
107:7	$\underset{\text { agent (3) }}{\text { a }}$	34:1	applicants (3)	$28: 17 ; 29: 12 ; 69: 14$, $17 \cdot 73 \cdot 12 \cdot 77 \cdot 7 \cdot 81 \cdot 20$.
activities (9)	$\begin{aligned} & 50: 22 ; 51: 1,9 \\ & \text { ago (7) } \end{aligned}$	amount (9) 11:14;13:11;16:2;	$\begin{aligned} & 12: 22 ; 19: 24 ; 21: 20 \\ & \text { applicant's (2) } \end{aligned}$	$\begin{aligned} & \text { 17;73:12;77:7;81:20; } \\ & \text { 82:6,17;83:6,11;84:9; } \end{aligned}$
$\begin{aligned} & 10: 3,7,18 ; 54: 15,17 ; \\ & 83: 2,6 ; 96: 24 ; 100: 5 \end{aligned}$	$\begin{aligned} & \text { ago (7) } \\ & 33: 12 ; 34: 5 ; 36: 1 \text {; } \end{aligned}$	$\begin{aligned} & 11: 14 ; 13: 11 ; 16: 2 ; \\ & 74: 3,10 ; 75: 6 ; 78: 22 \end{aligned}$	applicant's (2) 10:1;16:11	$\begin{aligned} & 82: 6,17 ; 83: 6,11 ; 84: 9 ; \\ & 97: 17,19 ; 101: 5 ; \end{aligned}$
activity (9)	46:5;56:14;72:4;	80:23;112:23	application (42)	103:5;112:3;117:11
20:4,8;21:8,24;	74:13	amusement (1)	7:1,4;8:20,21;9:2,9,	arguments (3)

10:1;34:12;117:10	authentic (1)	basic (2)	berms (2)	Boats (2)
armoring (5)	46:19	28:18;31:3	7:22;72:2	44:3,10
28:6,10,19;74:14,	available (2)	basically (7)	Bermuda (2)	bodies (2)
23	41:19;91:11	12:6,15;22:21	106:4,6	88:19;89:4
around (18)	avenues (1)	26:20;29:17;30:1	beside (1)	BOEM (7)
28:14,16,23;31:13,	13:13	85:18	40:8	18:16,16;26:10;
17;36:16;54:17;59:1;	avoid (4)	basis (3)	best (18)	30:3;37:3;51:4,7
65:7;75:12;78:8,19;	13:7;22:16;26:15;	75:7,11;77:1	12:12;13:19,24,24;	BOEM's (1)
80:22;94:12;102:1,5,	71:4	bass (1)	14:14;15:24,24;	40:5
21;103:23	aware (3)	13:2	16:21;21:16;28:21;	book (2)
array (1)	30:13;39:22;80:15	battle (1)	38:6;41:18,19;42:17;	13:2;52:6
37:6	away (16)	59:17	59:17;68:9;85:21;	bore (1)
Article (1)	20:3;26:20,21;	Bay (32)	97:5	65:9
88:21	27:11,14;30:24;62:6	7:11;12:9,20;14:16;	better (4)	borealis (1)
articulated	6;66:10,11;67:1;	15:12;19:1;20:6;27:4;	35:2;48:23;76:18;	$67: 24$
17:2	68:12,14;81:23;	53:4;65:13,18;69:19;	114:4	both (15)
artifacts (1)	93:12;113:18	77:9;78:8,11;88:7,9;	beyond (1)	24:11;46:4;52:13;
46:20	awful (1)	90:19;92:20;95:15;	39:19	60:21;61:7;65:10;
artifical (1)	20:15	100:2,10;101:6;	BHB (1)	74:23;79:2,12,15,22;
28:24	aye (6)	102:6,9,18,24;103:2,	42:11	84:18;87:23;111:22;
aside (4)	6:11,12;118:9,10,	19;107:13;112:7;	biannual (1)	116:12
9:21;13:6;115:24	17,18	115:20	105:24	bottom (6)
116:2		beach (2)	big (6)	14:8,8,19;66:18;
aspect (1)	B	20:13;21:23	13:9;24:2;41:16;	80:3,11
117:9		beaches	61:21;85:10;86	bottoms (1)
aspects (2)	bachelors (2)	78:9	bigger (1)	27:10
36:23;41:15	49:19;99:18	bear (3)	71:16	bought (2)
assent (3)	bachelor's (1)	42:9;62:4;74:	biggest (2)	20:16,17
33:18,21;	107:11	Beavertail (1)	13:15;14:2	boulder (4)
assess (2)	Back (20)	56:12	billions (1)	15:8;62:4;81:15,23
77:17;111	12:21;15:3;16:21	became (2)	36:10	boulders (10)
assessment (13)	25:4,9;31:3;44:6;	43:10;50:	binding (1)	15:15;46:18;60:16;
70:16;77:6;82:24;	55:17;66:19;67:2,3	becomes (2)	30:4	$61: 15,16 ; 62: 1,9 ; 63: 6$
88:15;90:2,3,10;	69:2;71:9;76:5,17;	25:22;44:12	biology (1)	7;78:9
108:22;114:8,10,11,	77:18;80:2;81:15;	beds (1)	107:1	boundary (8)
18;115:2	85:15;86:22	114:1	bit (20)	8:15;15:12;69:1;
assessments (1)	backdrop (1)	began (2)	14:12;24:5;26:9	76:8;95:5,10,11,14
61:1	47:16	88:3;90:2	29:22;35:2;52:21;	break (4)
associated (4)	backed (1)	begin (7)	54:4,16;57:17,20,24;	54:11;86:19,20;
10:7;31:9;95:24;	70:13	$40: 7 ; 89: 21 ; 92: 4,$	85:1;91:7,18;92:24;	$91: 18$
110:9	background (11)	10;93:12;98:7	96:22;97:19;98:9;	breakdown (1)
Association (1)	18:19;19:21;31:3	behalf (1)	110:11;113:24	14:24
99:14	35:18;49:17;57:18,	33:8	black (1)	breaks (1)
assumed (1)	20;87:20;89:13;	behind (2)	95:9	24:23
$25: 6$	99:17;107:10	66:19;80:1	Block (10)	Bridge (9)
assuming (1)	bags (3)	belabor (1)	17:9;20:10;29:5;	14:18,19;66:22
104:13	7:21;17:4;72:	31:19	32:3,7,19;88:14;98:3;	67:5,13,18;78:17;
Atlantic (1)	bank (1)	believes (1)	99:16;112:8	79:8;84:19
107:21	38:2	13:16	Blount (1)	brief (4)
attach (1)	barge (14)	bell (2)	44:3	9:1;27:24;64:20;
98:7	65:21,22,23;66:11,	66:6,7	blue (2)	86:21
attendance	21;67:3,6,11,12;68:1;	below (3)	95:13,24	briefly (9)
5:9;53:5	78:16,24;79:3,22	7:18;42:2;70:3	Board (11)	35:17;39:24;49:16;
attention (1)	barges (1)	beneath (1)	10:10,10;22:10,10	51:11;72:13;87:19;
36:17	21:12	69:16	46:9;47:10;51:16;	99:8;105:3;107:9
Attorney (4)	base (2)	benefit (3)	88:20,21,23;89:2	bring (10)
8:22;33:3,5;99:22	23:16;99:	7:4;85:3;86:	boat (2)	9:4;15:1;33:14
attrition (1)	based (10)	benign (1)	15:2;99:14	42:12,14;46:3,9;
67:1	71:17;74:1,9;76:19;	77:9	boating (18)	58:11,13;65:20
August (2)	77:5;100:1,9;101:5,	benthic (9)	93:22;94:1,2,6,16;	bringing (6)
55:9;111:24	23;102:17	19:14;26:24;83:20	95:12,17,19,22;96:3,	29:23;39:8;41:21;
Aurora (3)	baseline (1)	$90: 3,10 ; 97: 18 ; 114: 7$	$6 ; 100: 2,6,10 ; 101: 8$	47:18,18;92:22
67:23;71:18;79:7	117:12	10,18	24;102:3;103:6	brings (2)

$\begin{gathered} 6: 23 ; 24: 7 \\ \text { broad (1) } \\ 31: 8 \end{gathered}$	C	$\begin{aligned} & \text { 80:1;86:17;87:4; } \\ & \text { 97:22;98:13;106:15 } \\ & \text { called (7) } \end{aligned}$	$\begin{gathered} 81: 6,7,8 \\ \text { carries (2) } \\ 118: 13,19 \end{gathered}$	
Brook (1)	cable (203)	16:14;59:18;67:23;	case (7)	86:13,20,22;96:10,13,
88:2	7:8,13,21;8:5,9,11,	68:19;71:13;82:23	18:3,22;30:12;31:1;	15,17;98:11;106:13;
brought (2)	14,17,18;12:9,9;13:2,	$94: 10$	84:7;85:21;102:12	113:10;116:23;117:3,
42:9;47:10	3,10,17,17,20;14:3,5,	calling (1)	cases (1)	14,17,24;118:7,9,11,
buffer (1)	21,22;15:2,3,5,11;	8:23	$79: 22$ Casidy	$13,16,19$
24:6	16:1,4,5,12,20,23;	came (5)	Cassidy (3)	change (7)
build (1)	17:4;18:8,9,24;19:9;	20:13,13;59:21	106:16,18,21	$13: 1 ; 14: 8,17 ; 15: 22 ;$ $97 \cdot 16 \cdot 110 \cdot 18 \cdot 113 \cdot 1$
building (2)	$\begin{aligned} & \text { 20:3,6,11,17;21:13, } \\ & \text { 19,22;22:3;25:6,13, } \end{aligned}$	cameras (1)	106:21	changes (3)
36:9;44:2	$16,20 ; 27: 12 ; 28: 5,6,$	63:2	Cat (1)	14:6;20:5;24:13
built (5)	10,12,14,16,20;29:2,	Campus	114:7	changing (1)
23:14,17;29	19,20;30:4;31:22;	53:5	catch (1)	14:24
47:13;48:3	34:2,4;37:12,14,22	can (69)	113:12	Chapter (1)
bulk (1)	23;38:3;40:11;41:20;	10:15;11:9,9;13:13	Category (9)	94:13
103:10	47:15,20;52:20;54:5,	14:1,10;15:17,24;	33:21;41:6,7;51:1	characteristics (1)
bump (1)	12,17,19,21,24;55:20;	16:2,23;17:24;18:5;	20;63:11,15;72:5;	46:19
76:12	56:16;58:9;59:5,13,	22:16;23:17,21;24:1;	90:9	characterize (
bunch (2)	23,24;61:4,10;62:8,	26:5;30:4;34:11,14;	caught (1)	92:16
12:21;54:15	22;63:19,22;64:14,	35:3;36:20;37:9;	62:21	Charleston (1)
buoy (7)	18;65:3,13,20;66:3,	39:24;43:11,15;47:8,	cause (2)	81:5
94:10;96	16,20,23;67:6,9,12,	21;52:23;53:3,9,24;	62:18;108:1	chart (2)
102:20,23,24;103:8	18,22,24;68:4,12,16,	54:10;55:22;58:10;	CBRA (1)	55:16,18
16	$23,24 ; 69: 1,4,16,17$	60:16,22;61:2;63:3,	82:24	Charter (1)
buoys	70:2,6,8,11,20,23;	23;64:10,15;68:9;	C-B-R-A	99:14
94:11,14	71:18,19;72:9,11,15,	70:20;71:2,9;74:16	82:24	check (1)
Bureau (1)	22,24;73:4,5,7,16,20;	75:5;76:6,7,13,18;	center (1)	26:3 Chief (1)
51:7 burial (20)	74:14,14,16,22,23,24;	77:11;87:2;91:18;	82:2	Chief (1)
burial (20) $7: 17,23 ; 13: 17$	75:3,7,10,20;76:4,5,	92:22,23;93:2,5;		87:14
$7: 17,23 ; 13: 17$ $14: 21: 16: 20 ; 19 \cdot 4 ;$	13,15,16,20;77:2,4;	95:18,23;97:5;	$61: 19 ; 62: 16$	choose (1)
$\begin{aligned} & 14: 21 ; 16: 20 ; 19: 4 \\ & 25: 10 ; 26: 23 ; 27: 13 \end{aligned}$	78:20;79:8,16,18,20,	104:11;105:1;110:11;	centroid (1)	14:14 Christin
25:10;26:23;27:13 $44: 22 ; 45: 4 ; 52: 20$;	$\begin{aligned} & 24 ; 80: 2,4,13,14,20 \\ & 81: 12 ; 82: 3,23 ; 83: 1 \end{aligned}$	112:17;113:13;116:4; $117: 15$	certain (7)	$\begin{gathered} \text { hristí } \\ 33: 6 \end{gathered}$
69:8;70:3;79:22,24;	12,16;84:11,16,16,18,	cancel (1)	14:4;19:14;24:14	CIC (1)
82:23;85:18,19,21	23;85:4,4,19,19;86:3,	30:5	52:22;78:9;83:5;98:6	43:6
buried (15)	7;88:15,17;90:22;	cancelling	certainly (4)	Ciochetto (2)
20:15;25:6,	95:14	30:11	34:13;52:24;54:	11:6;33:11
37:6,12;38:4;66:2	100:23;101:13,17,19	capable	87:21	circles (2)
69:17;70:11;71:19; $77 \cdot 14 \cdot 80 \cdot 9 \cdot 83 \cdot 12,13$	102:1;103:14;104:2	:23	certificate	5:11;103
77:14;80:9;83:12,13	105:21;106:7;108:7,	capacity	51:17	Circuit (5)
burrow (1) $92: 10$	23.109 17:110 19	36:16	certification	8:5,6,10,11,12
92:10	111:9;112:9,23	capjet (1)	24:19	cited (1)
burrowing (2)	114:17	71:14	certifications	47:12
91:16;92:8	cables (40)	c-a-p-j-e	99:21	clean (3)
bury (7)	7:6,17,24;	71:14	Certified	$38: 18,24 ; 68$
$\begin{aligned} & 18: 3,4 ; 37: 20,22 \\ & 71: 20 ; 77: 14 ; 83: 2 \end{aligned}$	12:19;16:6;17:18;	capped $23: 15$	$\begin{aligned} & 32: 9 ; 50: 21 ; 51: 1, \\ & \text { cetera }(\mathbf{8}) \end{aligned}$	$\begin{aligned} & \text { clear (13) } \\ & 61: 24 ; 62: 9,18 \end{aligned}$
burying (1)	,23;30:5;36:11	captain		$\begin{aligned} & : 24 ; 62: \\ & 21,24 ; 6 \end{aligned}$
30:15	8:5	99:24;102:10	60:17;74:6;78:	1:17;82:20;95:1;
Business (4)	60:4;68:3;69:11;71:8;	capture (3)	97:14	115:8
7:12;8:1;37:18;	72:18,19;73:2,10;	111:17,18;112:15	chain (1)	clearance
38:1	$74: 21 ; 78: 3,23,24$	career (5)	47:23	40:10
businesses	79:2,12,13,15;81:3,	49:24;87:21,2	Chair (12)	cleared (3)
43:8	83:5;84:20;90:19	88:3,6	6:19,22;9:3,10;	61:17;64:4;91:24
buy-in (1)	calendar (1)	Carey (11)	11:17;12:2;22:3;33:4;	clearing (1)
110:15 Buzzard's (1)	103:18	86:17;87:5,6,9,11	34:10;87:4;89:9	63:14
Buzzard's (1)	call (21)	89:10,19;94:19;	117:22	click (1)
107:13	5:4,9;	95:16;96:9;103:5	CHAIRMAN (46)	105:1
bycatch (4)	$37: 19 ; 48: 19 ; 57: 3$	C-a-r-e-y (1)	$5: 3,12,14,16,18,20,$	close (2)
111:19;115:24; $116: 2,4$	60:11;62:10;65:5,21;	87:9	$\begin{aligned} & 22 ; 6: 7,9,13,15,20,23 \\ & 11: 21: 28: 1: 32: 24 \end{aligned}$	$24: 18 ; 28: 24$
116:2,4	$66: 6,12 ; 68: 14 ; 79: 21$	Carolina (3)	$11: 21 ; 28: 1 ; 32: 24$	closer (2)

44:12;57:24	Commission (2)	118:20	constructed (3)	8:9
closest (1)	39:12;94:9	concludes (1)	32:17,17;43:16	Corporation's (1)
26:19	committed (1)	117:1	construction (25)	37:17
closing (1)	43:14	conclusion (1)	8:3;22:22;33:24;	correctly (1)
24:4	common (5)	34:11	39:22;40:5,8;42:24;	19:6
coast (1)	10:11,15,19,24;	concrete (9)	43:1;44:7,17;53:7,10,	correspond (2)
45:22	68:19	7:21;17:2;29:1;	14;54:3;56:13;75:8;	95:12;105:2
Coastal (4)	communications (1)	37:24;72:1;73:3,3,5;	96:21;101:16,23;	corresponded (1)
5:5;7:16;21:8;98:3	52:9	98:7	102:2;103:14;104:3;	94:14
coastline (2)	communities (2)	condition (1)	106:7;109:18,20	corresponds (1)
45:16;95:3	12:22;45:15	45:17	consult (1)	94:15
co-headquarters (1)	community (10)	conditions (1)	46:13	corridor (10)
43:3	14:10;16:15;17:16;	85:1	consultant (1)	13:4,4;95:14;96:3;
Coia (1)	18:21;97:18;99:13;	conducive (1)	88:4	108:7;112:23;115:9,
5:22	102:15;110:12,16;	17:12	consultants (1)	12,15,22
coils (1)	115:18	conduct (3)	50:18	cost (3)
74:18	companies (2)	25:20;99:7;110:10	consulting (20:14,18;40:22
coincide (1)	72:20;80:16	conduit (1)	42:11	Council (40)
116:19	company (3)	65:5	contact (2)	5:6,9;11:23;33:1;
collaborate (2)	41:20;46:9;47:22	cone (2)	70:15;83:9	34:10,13;35:17;36:3,
50:12;52:1	Company's (1)	60:11,13	contain (2)	4;38:16;39:24;41:8;
collaboration (1)	8:16	Co-Netic (1)	29:16;30:16	44:20;49:16;50:5;
113:4	comparatively (1)	29:17	contained (3)	51:21;56:23;57:17,
collapse (1)	27:3	confident (1)	11:10;31:10,12	20;58:19;61:12;
80:12	compared (4)	77:13	content (1)	63:12;67:21;77:23;
collapses (1)	19:19;27:4,6;92:14	confused (1)	59:21	86:13,24;87:19;89:9,
66:18	compile (1)	14:20	context (1)	14;90:8;94:23;96:18;
colleague (1)	42:12	connect (2)	37:1	97:3;99:8;100:23;
115:7	complete (2)	21:13;38:10	continue (4)	104:12;106:13;107:9;
collect (1)	40:7;69:2	connected (1)	8:10,11;26:4;118:3	112:17;117:19
87:16	completed (1)	37:5	continues (1)	council's (1)
collected (1)	65:4	Connecticut (2)	8:14	117:6
90:13	completeness (1)	88:1,20	continuing (1)	couple (7)
collectively (1)	118:2	connection (3)	26:4	$24: 13 ; 26: 16 ; 45: 11 ;$
$115: 17$	completes (1)	84:16;88:12;89:21	contract (4)	54:1;81:14;84:15;
college (1)	69:4	connections (2)	58:24;70:14	85:16
49:20	completion (2)	43:10;84:15	100:18;110:	course (7)
colloquially (1)	65:12;92:13	connects (1)	contracted (1)	13:6;36:8;69:12;
99:24	complex (1)	43:7	39:3	76:8;77:16;88:11;
Columbus (2)	50:3	consequences (1)	contractor (5)	97:21
103:11,12	compliant (1)	39:20	59:4,7;69:15;70:15;	court (8)
column (1)	48:2	conservation (1)	73:23	42:7;48:13;57:23
31:3	complicated (2)	99:12	contractors (3)	60:12;66:14;78:18;
comb (1)	29:22;43:18	conservative (2)	58:23;59:14;60:22	86:18;107:14
59:19	component (2)	92:17,18	contracts (1)	cover (5)
combined (1)	43:17;53:18	consider (5)	58:23	9:18;23:6;32:5;
28:22	components (1)	20:22;21:15;31:14;	contrast (1)	33:23;112:4
combining (1)	43:17	44:13;76:8	15:18	covered (1)
95:23	concentration (1)	consideration (3)	contributed (1)	12:11
Coming (4)	35:21	23:18;26:16;79:12	110:21	covering (1)
20:9;39:2;76:3;	concern (7)	considered (6)	control (1)	98:4
83:9	7:13;17:17;19:13;	18:14;24:21;30:9;	59:1	covers (2)
commended (1)	27:16;34:8;93:19;	31:8;82:19,20	conversations (1)	54:22;112:9
5:2	117:12	consistencies (1)	13:6	Covid (1)
comment (2)	concerned (2)	10:4	cooperatively (1)	52:24
113:24;117:24	20:2;95:6	consistency (2)	107:20	Covid-19 (1)
commercial (9)	concerns (2)	12:7;32:13	coordinate (1)	111:3
41:15;59:20;81:21;	19:9,16	consistent (1)	50:12	crab (5)
90:11;109:3;113:16,	conch (1)	10:2	coordinating (1)	17:21;108:15;
22;116:10,13	27:1	consistently (2)	110:7	109:6;111:19;115:6
commercially (3)	conclude (1)	18:4;111:11	copper (2)	crafts (1)
108:22;111:8;	27:24	construct (3)	$74: 19 ; 86: 1$	30:20
116:20	concluded (1)	22:6;38:8;51:12	Corporation (1)	create (7)

$7: 19 ; 42: 19,23 ; 65: 9$	$96: 12$	$111: 2$	89:12	$24: 7,8 ; 59: 2$
created (3)	$95: 9,15 ; 104: 12,15,$	113:3	$\begin{aligned} & \text { etails (2) } \\ & \text { 14:11;40:3 } \end{aligned}$	$9: 1 ; 35: 11,17 ; 41: 12 ;$
42:21;44:8,11	17	delays (1)	detect (1)	59:2
creates (4)	data (7)	110:4	113:1	dirt (1)
24:24;64:7;66:15;	83:1;87:17;90:13	DEM (17)	determine (4)	42:1
68:16	105:1,8;109:24;	12:24;15:18;24:11;	30:19;31:24;	disastrous (1)
creation (1)	112:14	25:17;108:6,17,24;	110:18;112:20	19:23
44:6	date (3)	0:9,13,23;111:10;	determined (1)	discuss (2)
credential	67:3;110:3;118:3	112:18,24;113:13;	115:19	10:11;27:19
99:23	dates (2)	115:16;116:4,16	determining (1)	discussed (5)
credentials (1)	9:21;100:14	demonstrated (1)	99:15	67:9;73:23;77:8;
89:14	David (2)	19:3	develop (5)	82:17;84:15
crew (3)	11:6;33:1	demonstrative (3)	60:22;77:5;109:2	discussion (4)
44:2,4,9	Davisville (3)	36:19;53:8,13	110:6,16	10:17;45:13;46:3;
critical (7)	8:13,14;38:1	DEM's (1)	developed (1)	82:15
12:14;15:19;16:3;	day (10)	110:5	47:8	discussions (5)
25:7,14;84:24;85:13	75:12,13;100:7,12,	Denmark (1)	developer (1)	14:2;46:7,10;52:16;
critically (2)	12;103:9,9,11,12;	36:14	36:12	117:8
23:5,6	118:1	Department (2)	Development (10)	displacement (1)
CRMC (15)	days (13)	51:18;99:12	8:9;35:11,16,23;	19:12
5:23;7:10;12:6,21;	19:20;23:15;66:22;	depend (1)	37:17;41:10,12;	displacing (1)
20:9;25:21;26:17;	68:11;76:17;78:24;	87:18	51:23;60:5;107:8	19:11
33:20;45:18;50:21;	79:4,5,7,12;93:15;	depending (2)	device (1)	disposal (1)
51:5,14;52:9;69:23;	102:11,12	26:1,8	68:15	41:19
117:6	deal (3)	deploy (3)	diagonal (1)	disrupt (1)
CRMC's (1)	30:2;34:6;113:17	62:6;66:11;68:1	104:12	21:8
93:19	debate (1)	depressor (2)	diameter (1)	disruptive (1)
cross (4)	18:23	80:1,11	85:23	22:1
7:13;8:6,7;72:18	debris (2)	depth (19)	Dieter (17)	disseminated (1)
crossing (1)	60:16;62:18	7:18,23;13:17;19:5;	33:7;86:15,17,19	6:4
8:17	decades (2)	21:6;25:10;37:12,23;	87:4,10;89:9,16,17;	distance (8)
crossings (7)	88:9;91:2	44:22;45:1,4;63:22;	96:8;97:3;98:13,21;	18:3;24:1;78:6,7;
16:5,6;72:9,11,15;	December (4)	69:8;70:2,24;83:12;	106:11,15,22;113:8	103:18,21;104:17;
73:10;77:7	109:11,13,15;110:2	84:3,10,12	difference (2)	105:17
cross-section (1)	deck (1)	describe (11)	18:5;111:23	disturb (1)
86:1	68:2	13:5;34:3;36:2;	different (15)	90:19
cross-sectional (1)	Decommissioning (2)	49:16;50:5;60:3;	10:7,18;15:7;16:23;	disturbance (10)
74:19	26:9;32:14	74:16;87:19;94:23	18:19;50:10;84:20;	7:19;19:22;27:4
cruising (1)	deem (1)	99:8;107:9	91:21;93:16;97:19;	55:8;64:7;91:4,11;
100:8	16:20	described (5)	98:2,8,9;107:21;	93:2,6;114:16
cultural (3)	deep (9)	12:18;38:8;72:13	112:6	disturbances (1)
46:14,20,22	18:4,4;20:16;21:1;	75:3;93:7	difficult (1)	92:21
curious (1)	71:5,19,22;83:23;	describing (2)	86:10	divers (1)
45:14	88:16	56:2;83:14	dig (1)	66:1
current (5)	deeper (12)	description (3)	42:3	docks (1)
7:7;16:1;18:18,19;	7:18;13:18;21:5	8:20;9:2;51:2	digging (1)	100:17
39:17	46:15;69:14,17,23;	design (2)	79:19	document (2)
customary (1)	70:23;71:20;83:9;	41:15;60:6	diligence (2)	58:24;70:17
76:19	91:16;92:8	designed (9)	58:22;82:9	documents (1)
cut (6)	deepest (2)	74:6;84:12;108:21;	dinner (1)	90:14
16:7;22:5;68:20;	37:23;69:23	111:16,18;112:2,18,	86:4	dollars (2)
74:10;76:5,16	deeply (1)	18;115:17	direct (1)	36:10;43:15
CVA (3)	92:11	desires (1)	42:24	Don (1)
51:1,5,9	defined (1)	117:6	directed (1)	28:2
CVA's (2)	94:11	DeSISTO (12)	115:16	done (27)
32:9,12	definitely (1)	34:20,22;49:1,3	direction (1)	14:14;15:
D	$\begin{gathered} \text { 64:11 } \\ \text { degree }(5) \end{gathered}$	$\begin{aligned} & 57: 7,9 ; 87: 7 ; 89: 11 ; \\ & 98: 15,17 ; 106: 17,19 \end{aligned}$	$\begin{gathered} 8: 8 \\ \text { directional (8) } \end{gathered}$	$\begin{aligned} & \text { 22:7,13;30:18;33:13; } \\ & 39: 10 ; 45: 20 ; 46: 21 ; \end{aligned}$
	26:19;35:20,22;	detail (7)	8:2;20:8,24;21:20;	48:12;52:15,22;
damaged (2)	107:11,12	$9: 6 ; 10: 15 ; 14: 11$	$37: 19 ; 40: 9 ; 55: 23$	$60: 24 ; 62: 10 ; 64: 16$
13:21;23:5	delay (4)	27:19;40:1;54:4;97:4	64:24	65:15;70:19;74:10;
dark (1)	81:1;110:22,24;	detailed (1)	directly (3)	77:10;79:20;82:11;

88:12;93:13;114:24;	Dwyer (1)	58:19	69:15	84:8;90:23;92:18;
115:1	11:6	electromagnetic (2)	engagement (1)	109:22;116:5
dotted (1)	dynamic (1)	17:17,22	115:18	estimated (6)
95:9	92:19	electronics (2)	engineer (1)	7:19;25:13;42:23;
double (1)	E	$30: 19,21$	$77: 11$	$72: 8 ; 73: 15 ; 75: 10$
down (15)	E	$\begin{aligned} & \text { elements (1 } \\ & 90: 5 \end{aligned}$	engineered (1) $71: 13$	$\begin{array}{\|c} \text { estimates (3) } \\ 18: 6 ; 19: 3 ; 84: 6 \end{array}$
17:3;24:23;29:11,	Eakin (5)	Ellis (7)	engineering (3)	et (8)
13;54:11;62:20;	40:2;48:22;49:2,5;	41:22;47:21;57:4,8,	41:21;70:17;82:23	24:2,2;58:6;59:21;
66:19;68:13;69:1	56:22	11;77:22,24	engineers (1)	60:16;74:6;78
80:12;82:18;91:18;	E-a-k-i-n (1)	E-I-1-i-s (1)	78:8	97:14
92:23;93:14;101:2	49:5	57:11	England (1)	Europe (1)
Dr (11)	earlier (10)	else (2)	35:23	58:12
87:6,11;89:10,19;	22:4;26:14;40:16;	48:18;117:3	English (1)	European (1)
94:7,19;95:16;96:9;	51:2;52:11;60:19;	embedded (1)	35:20	47:17
97:6;103:5;107:19	75:7;103:23;109:5,17	29:20	enough (8)	evaluation (2)
drag (1)	early (6)	emergency (1)	18:1;20:3;24:23	59:19,21
62:17	22:20,21;47:11	87:1	71:5,19,22;89:13	even (6)
dredge (5)	$60: 5 ; 92: 5 ; 109: 10$	emerges (1)	98:5	18:5;19:4,17;31:1;
21:10,11;22:20;	earned (1)	43:9	ensure (4)	62:19;92:20
51:18;88:5	102:	emerging	13:23;25:16,2	evening (13)
dredging (5)	earning (1)	37:24	26:3	5:3,24;6:16;7:1;
21:15;63:24;64:8,	102:10	EMF (23)	ensuring (8:21;33:4;34:11,15;
11;93:9	East (4)	13:21;14:10,11	13:17	50:14,19;55:6;90:8;
Drew (4)	101:11;103:3,4	17:17;18:2,6,9;19:5;	enters (1)	117:15
86:17;87:5,6,9	104:6	29:14,16,18,19;30:7,	8:17	event (2)
D-r-e-w (1)	easy (1)	11,20,23;31:9,9;75:5;	entertain (3)	26:2;77:18
87:9	$45: 11$	83:19;84:6;85:16,17	6:4;118:2,14	eventually (2)
drill (4)	ecologist (1)	employed (6)	entire (4)	20:15;91:12
37:19,22;65:1,2	89:8	35:8;43:4;49:7	27:3;32:10;43:23	Eversource (2)
drilled (1)	Ecology (4)	57:13;87:11,12	$53: 16$	36:7,7
20:11	49:22;87:22,23	employees (1)	entirety (1)	everybody (6)
drilling (7)	89:10	$44: 14$	$25: 20$	$9: 4 ; 10: 21,22,22$
$8: 2 ; 20: 8,24 ; 21: 20 ;$	edge (1)	encapsulate (1)	entrance (1)	$41: 17 ; 42: 16$
40:9;55:24;64:24	68:20	29:18	69:19	everyone (6)
drills (1)	education	encapsulated (2)	environment (7)	$5: 3 ; 10: 5 ; 11: 1$
60:11	57:21;89:13	66:17;79:24	14:7;18:1;19:19	45:12;53:3,9
Drive (5)	educational (4)	encapsulates (1)	26:12;49:22;50:4	evidence (1)
8:5,6,10,12,12	35:18;49:17;87:20;	68:16	68:5	$92: 8$
driveway (1)	99:17	encompass (1)	environmental (10)	evident (1)
8:7	effective (2)	54:16	$17: 7 ; 19: 14 ; 35: 21$	52:15
duct (9)	17:13;76:7	encompasses (1)	49:19,21;51:19;	exact (1)
65:8,9,10,24;66:2,4,	effects (3)	$58: 24$	$87: 12,13 ; 90: 6 ; 107: 2$	67:4
6,8;67:3	$30: 19,19 ; 88:$	encountered	environments (1)	Exactly (4)
due (5)	efficient (1)	110:4	92:19	30:6,8;32:11;69:3
14:11,18;25:1	76:7	encroach	envisioned (1)	EXAMINATION (6)
58:22;82:9	effort (1)	24:5	86:6	35:5;49:6;57:12;
DULY (6)	11:15	end (11)	equally (1)	87:10;98:21;106:22
34:21;49:2;57:8;	efforts (1)	21:2;22:20;55:9,11;	112:7	example (3)
87:6;98:16;106:18	110:5	56:3;59:16,21;76:9;	equipment (4)	48:1;70:21;83:11
duration (1)	eggs (3)	97:11;103:15;117:15	14:24;44:13;69:13	except (1)
67:10	27:8,10,	endeavor (1)	78:14	29:2
during (17)	eight (1)	19:1	essence (1)	exception (9)
15:16;19:10,12;	79:5	ended (2)	19:18	7:2,15;27:18,20
22:19;25:12;26:6;	either (6)	32:19;99:1	essential (4)	34:7,12;94:19;105:5;
27:9;43:1;44:16;	16:12;29:1;72:1;	ends (1)	81:19;90:3,11,15	117:11
54:13;60:9;61:1;	76:12;100:13;110:2	65:10	essentially (5)	excuse (4)
63:17;82:15;83:5;	elaborate (1)	Energy (13)	18:1;19:12;24:24	38:9,21;81:8;101:7
88:6;92:5	96:22	22:9,10;35:22;	31:3,6	Executive (2)
duty (1)	Electric (1)	38:18,24;39:9,16;	established (2)	9:1;87:14
15:10	8:16	51:7,15;88:20,20,23,	43:2;91:22	Exhibit (2)
dwell (1)	electrical (4)	24	estimate (8)	94:18;105:4
114:11	24:16;57:16,19;	engaged (1)	56:15;73:19;74:10;	exist (2)

16:17;19:18	extra (1)	favor (4)	53:7;60:24;77:1	floor (1)
existing (8)	74:24	6:11;27:10;118:9,	find (9)	70:4
8:7,12,13;23:9,10;		17	10:11,11,15,19,24	flounder (2)
38:11;111:7;112:13	F	feature (8:6;62:5;71:11;	27:8;115:11
exit (2)		75:4	91:13	flounder-fluke (1)
8:3;21:9	FAB (2)	February (4)	fine (1)	116:8
expect (5)	11:9;12:22	22:21;55:8,12,13	24:20	flow (1)
32:15;40:4;93:5	facilitate (1)	federal (7)	fine-toothed (1)	13:13
102:1;116:8	46:10	12:7;23:24;32:13	59:19	fluidization (1)
expectancy (1)	Facilities (2)	37:10;41:4;46:13	finger (1)	71:15
32:15	22:9,10	48:10	55:22	fluidizes (1)
expected (2)	facility (14)	feedback (1)	finish (2)	66:15
25:14;32:16	12:11;22:5;23:10,	52:4	34:6;47:3	fluidizing (1)
experience (15)	20;24:17;25:1;38:10;	feeding (1)	finished (1)	93:7
20:10;35:19;36:8;	43:17;51:15;67:8;	93:12	88:3	fluke (3)
42:15;47:18;49:17;	88:21,23;89:2;98:3	feel (2)	firm (1)	116:12,15,19
53:6;57:21;76:20;	facing (1)	15:23;53:1	33:5	fluted (1)
89:13;99:9;100:1,9;	80:21	feeling	first (21)	66:7
101:5;102:8	fact (7)	60:13	5:7;6:1;14:23;	focus (9)
experienced (1)	14:18;18:24;66:17;	feet (30)	20:12;23:7;33:23;	36:22;41:6;51:11;
68:6	69:14;79:16;81:4;	7:18;13:18;18:5	34:14,17;36:13;46:8;	53:19,21;100:5;
experiencing (1)	89:12	21:7;26:20,21;29:3,3;	48:1;51:13;60:9;	101:10;107:12;
80:17	factor (1)	31:2;37:13,20,23;	61:14;62:9;64:17	116:15
expert (3)	19:7	44:22;45:1,4;61:22,	70:15;72:11;91:5,24;	focused (3)
34:2;89:4,10	factors (2)	23;69:13,18,24;70:2,	93:1	12:5;26:17;35:22
expertise (1)	14:23;19:	12,21,22;82:18;83:8,	fish (20)	focusing (3)
42:13	factory (4)	23,24;84:4,7	17:20;82:7;90:3,4	50:3;56:11;113:11
experts (4)	68:5;81:11;85:5,7	felt (4)	11,16,21;91:6,9,10,	folks (1)
12:22;52:2;85:5;	failure (1)	47:11;109:	13,14;93:3,5,12,14;	42:11
89:12	25:7	110:16,16	97:14;107:23;116:10,	follow (1)
explain (9)	fair (1)	fences (1)	20	8:5
36:21;38:16;42:21;	92:16	24:2	Fisheries (12)	following (4)
51:11;61:12;64:15;	fairly (3)	few (14)	10:9;81:21;99:1,2;	37:15;56:6;92:7;
67:21;70:3;82:21	31:12;75:13;85:8	16:19;18:5;27:5,9;	107:2,4,18,21;108:1;	94:5
explained (4)	fall (4)	33:12;34:5,6;49:21;	110:12;111:8;116:19	follows (1)
9:10;64:21;84:24;	40:5;54:5,6;66:16	56:14;72:4;74:13;	fisherman (3)	22:4
115:13	familiar (18)	75:24;90:4;103:10	111:1;113:16	follow-up (3)
exponentially (1)	29:16;41:7;53:10;	fiberoptic (1)	116:11	115:3,7;116:6
30:24	55:17;59:24;69:8;	74:22	fishery (7)	food (3)
export (27)	93:18,22;94:19;	field (4)	99:13;107:22,23;	91:3,6;93:3
7:6,13,24;8:4;37:8;	100:1,21;101:16;	18:20;89:5,7;91:24	113:22;115:10,11;	foot (1)
54:5,12;60:4;65:13;	102:5,20;103:24;	fields (3)	116:12	19:4
69:11;90:22;95:21;	105:5;106:4;108:1	17:17,18,22	fishing (15)	forces (1)
96:3;100:23;101:13,	familiarly (1)	figure (8)	14:9;16:12,15;	67:1
17,19;102:1;103:14;	101:24	94:13,20;95:20	17:16;18:1;70:18;	foremost (1)
104:2;105:20;106:6;	family (1)	96:4;100:20,21,24;	81:19;83:2,5,15;90:4,	51:13
108:23;109:17;	87:1	104:11	12;101:7;107:20;	forget (2)
110:19;111:9;112:9	far (5)	filing (2)	110:14	25:4;114:22
exposed (6)	20:3;27:11;39:15;	52:8;61:8	fits (1)	form (2)
13:20;14:4;15:5;	81:23;109:20	filings (2)	42:13	7:21;91:8
16:24;63:23;77:15	farm (13)	33:17,18	five (4)	formed (1)
exposure (2)	9:13,16;36:14;37:2,	fill (1)	26:7;75:12;81:24;	21:9
16:2,22	6,8;40:8;41:15,16;	39:6	99:6	forms (1)
expressing (1)	43:1;44:5;53:17;	filled (1)	fix (2)	98:6
47:11	88:14	72:2	15:2,2	forth (2)
extend (1)	farther (2)	filter (1)	fleet (3)	44:10;117:8
33:10	27:14;30:24	21:2	44:2;102:16;107:22	forward (11)
extending (1)	fast (1)	final (5)	flexible (2)	9:8;10:12,16,21,23;
95:14	76:13	40:7;59:17,18;61:2;	72:1;73:3	11:5,12;12:13;59:16;
extensive (2)	faster (1)	62:24	float (1)	60:21;68:22
33:14;46:7	31:15	finalized (3)	93:11	foundation (1)
extent (1)	fat (1)	63:17,18;110:7	floated (1)	$43: 16$
23:21	95:13	finally (3)	62:20	foundations (1)

40:11	general (1)	5:3;21:20;23:18;	81:19;82:7;90:3,16;	37:11;50:9;54:3;
four (21)	36:21	25:3;31:4;32:2,4;	114:8,10,18	59:18;64:17;69:12;
7:18;13:18;29:3;	generally (7)	33:4;43:8;47:24;48:9;	habitats (3)	71:6;74:13;97:2;
31:2;37:13;44:22;	74:16;94:23;	53:5;57:5;63:4;85:6;	14:19;27:11;90:11	101:19;109:17
45:1,2,4,5,7;61:19;	100:14,17;103:11,12;	86:19;113:15;116:8;	half (7)	hearing (9)
66:22;69:12;70:1,12,	104:17	117:14	29:3;74:10;75:13;	7:2;9:9,17,21;
22;78:24;79:4;82:18;	generated (1)	government (1)	77:12;92:12,14;	11:24;33:2;56:24;
83:22	17:18	99:18	109:23	117:7,17
frame (4)	gently (1)	GPS (1)	Hall (21)	heavily (4)
97:19;114:23;	68:13	30:21	5:20,21; $45: 10$;	8:1;21:23;47:7;
116:17,18	geographical (2)	grab (2)	46:17;47:1,4;81:14,	91:9
free (1)	94:21;112:3	62:2,3	17;82:6,13;83:14,18;	heavy (2)
53:19	geography (1)	graduated (2)	84:4,13;96:20;97:13,	86:8,11
frequency (2)	81:9	57:22,24	16;98:10;115:3,21;	height (3)
31:8,15	geologist (4)	grapnel (7)	116:2	100:12;103:9;112:1
frequently (2)	49:23;50:2;57:22;	62:11,11,12;63:9,	hamper (1)	held (2)
26:8;108:19	58:4	16;64:3,9	52:24	6:3;53:4
fresh (1)	geology (4)	g-r-a-p-n-e-l (1)	hand (9)	helicopter (1)
12:11	49:19,20;58:1;	62:11	11:2,7;16:15;34:20;	43:21
Friday (1)	87:23	gravel (1)	49:1;57:7;98:15;	help (7)
10:13	geophysical (4)	24:21	106:17;110:17	30:4;43:9,10;46:9;
front (1)	41:13,23;42:5;	graze (1)	handle (1)	50:20;109:1;113:13
68:20	60:14	91:13	23:9	helped (1)
fulfill (3)	geotechnical (3)	grazed (1)	handled (1)	43:24
22:11;38:13;40:19	41:14,24;42:4	91:9	23:11	helps (1)
full (2)	gets (7)	great (14)	handling (1)	53:20
59:19;61:3	15:6;16:9,13;28:24;	39:7;45:24;48:4;	65:23	herring (1)
fully (2)	30:24;37:14,16	50:5;51:6,16,20;52:8,	hanging (1)	115:10
32:17,18	giant (2)	15,21;57:13;65:15;	24:17	hertz (2)
function (1)	15:20;24:16	69:4;81:9	happen (9)	31:13,17
26:4	gigawatts (1)	greater (1)	22:19;25:15;44:1;	high (6)
further (13)	58:10	97:4	54:2,4,6,18,19;93:13	7:7;17:24;31:15;
30:3;33:19;34:14;	given (7)	greatest (1)	happening (2)	40:4;53:15;83:13
44:18;56:17,20;61:1;	18:6,24;19:18;	23:21	26:7;46:3	higher (3)
76:2;77:12,21;81:9;	26:21;59:3;84:8;	green (1)	happens (4)	18:18;76:3;112:22
96:8;113:8	103:14	37:9	65:16;70:1,11;	highlighted (1)
furthest (1)	gives (5)	grid (3)	93:10	105:18
104:20	13:12;60:13,15,17;	13:14;20:18,18	happy (3)	Hinckley (2)
future (2)	74:24	ground (8)	22:15;32:23;58:12	33:6,6
63:23;68:10	giving (1)	10:11,15,20;11:1;	hard (10)	historic (2)
G	13:8	$\begin{aligned} & 60: 20,20 ; 73: 22 ; \\ & 107: 23 \end{aligned}$	$\begin{aligned} & 11: 7,13 ; 14: 8 ; 24: 10 ; \\ & 92: 1: 98: 1.8: 100: 14 \end{aligned}$	$45: 14 ; 46: 14$ historical (1)
	14:1	group (3)	14,18	116:3
Gagnon (14)	goals (2)	94:7;98:8;99:6	harm (1)	history (1)
$5: 18,19 ; 6: 8,10,10$	38:18,24	groups (1)	113:23	47:10
$44: 21,24 ; 45: 7,9 ; 78: 1$	goes (7)	52:22	hazard (1)	hit (3)
3,5,12;118:6	25:9;38:7;59:1;	grow (1)	16:11	15:6,19;16:9
game (1)	60:20;67:3;80:2;	92:10	hazards (1)	holding (1)
9:2	101:2	grown (1)	22:17	23:22
Gareth (19)	GOMES (1)	43:4	HDD (8)	hole (3)
41:22;47:21;50:13;	28:13	guess (2)	37:19,21; $40: 8$;	65:2,9;88:1
54:3,16;57:3,5,8,11,	Gomez (50)	28:18;31:11	64:24;65:12,15,17,24	homes (1)
13;58:14,14;59:3;	5:14,15;28:3,10,16;	guessing (1)	head (3)	58:11
63:11;67:11;73:19;	29:5,7,14,23;30:6,8,	45:19	28:4;31:21;94:8	hook (2)
75:10;77:1,22	15,18;31:4,8,14,19,	guidelines (1)	heading (2)	40:22;62:16
G-a-r-e-t-h (1)	21;32:2,11,14,19,22;	51:5	20:6;23:1	horizontal (8)
57:11	34:5;47:5,6,24;48:4;	Gulf (1)	headquarters (1)	8:2;20:7,24;21:19;
gas (2)	84:14,15,20,23;85:8,	107:24	44:8	37:19;40:9;55:23;
$58: 2,6$ gave (2)	10,12,15,22;86:2,5,9,		hear (9)	64:24
gave (2)	12;113:11;114:9,13,	H	9:21,23,24;10:1,2;	horizontally (1)
55:10;84:6	15,19,24;116:6,17;		35:3;45:19;50:13,18	20:11
gear (1)	118:8	Habitat (11)	heard (14)	hosted (1)
83:15	Good (19)	$10: 10 ; 14: 8,8,9$	6:24;9:19;17:16;	102:18

hour (2)		in-person (2)	,7,73.24	
75:17,18	$\begin{aligned} & \text { includes (4) } \\ & \text { 12:18;15:12;40:10; } \\ & 90: 2 \end{aligned}$	53:1,4	2;79:11;80:3	f
hours (2)		input (3)	:8;90:7	33:11,1
19:20;48:5		11:4;46:24;109:	92:11;94:12;101:	jet (6)
house (1)	in	inshore (1)	investigations	14:16,2
53:4	33:14;34:1;36:13	2:1	41:13,14,23;50:1	66:12,13;71:16
hub (2)	incorporated (1)	(5)	vited (1)	jets (1)
43:6;44		$\begin{aligned} & 29: 20 ; 85: 19 ; 95: 10, \\ & 15 ; 102: 18 \end{aligned}$	10:9	68:17
hundred (2)	$90: 7$increase (1)		$90: 1 ; 102: 14$	jetting (1)
85:9;113:18		Inspire (4)		
hunt (1)	84:2 increased (2)	87:12,13,14;90:6install (3)	involved (6)	job (11)
17:23			$\begin{aligned} & 10: 18,19 ; 43: 8 ; 47: 7 \\ & 61: 8 ; 97: 1 \end{aligned}$	$\begin{aligned} & 35: 16 ; 44: 6 ; 49: 9,15 \\ & 50: 8 ; 52: 1,4,15 ; 57: 15, \end{aligned}$
	increasing (1)	$\begin{aligned} & \text { install (3) } \\ & 61: 4 ; 69: 16 ; 75: 7 \end{aligned}$		
		$\begin{array}{\|l} \text { installation (21) } \\ 19: 10 ; 34: 3 ; 41: 21 ; \end{array}$	involvement (1)	jobs (8)
idea (1)	independent (2)	$\begin{aligned} & 48: 2 ; 52: 20 ; 53: 21 ; \\ & 54: 17,19,21 ; 58: 5,23 ; \end{aligned}$	involving (1)	$\begin{aligned} & 42: 19,21,24 ; 44: 7,9, \\ & 11,15 ; 80: 22 \end{aligned}$
74:3	32:6;50:22indicate (2)		45:18	
ideas (3)		$\begin{aligned} & \text { 54:17,19,21;58:5,23; } \\ & \text { 59:5;64:14;65:20; } \end{aligned}$	$\begin{gathered} \text { in-water (1) } \\ 55: 7 \end{gathered}$	join (2)
10:22;43:8,10	18:13;86:23	69:4;70:15;75:1;$90 \cdot 19 \cdot 97 \cdot 11 \cdot 105 \cdot 21$.		68:2;79:15
identified (7)			Island (61)	joined (3)
7:14;15:21;72:16	$\begin{aligned} & 14: 13 ; 17: 6 ; 18: 17, \\ & 22 ; 20: 1,21 ; 21: 6 ; \\ & 28: 11 ; 30: 4 ; 90: 24 \end{aligned}$	$\begin{aligned} & 90: 19 ; 97: 11 ; 105: 21 \text {; } \\ & 110: 20 \end{aligned}$	$\begin{aligned} & 7: 10 ; 17: 9 ; 20: 10 \\ & 29: 5 ; 32: 3,7,19 ; 38: 14, \end{aligned}$	35:24;49:18,22
93:23;94:1;103:5;		110:20 installed (11)		joining (1)
109:5		$7: 10,17 ; 36: 14$	$20,22,23,23 ; 39: 4,9$	8:4
identify (2)	indicates (2)	$54: 12 ; 58: 8 ; 61: 10$	12,16;40:22;41:1;	joint (8)
15:14;100:23	$14: 3 ; 19: 17$indication (1)	64:19;66:9;75:11;		36:6;38:2;68:8,13;
identifying (1)		101:20;114:21	$20 ; 44: 3 ; 45: 22 ; 48: 6,7 ;$	69:2;76:17;84:17;
97:1	18:16	installing (4)	51:18;56:7,13;58:13;	85:5
images (2)	indicative (1)	37:18;56:15;58:9;85:4	60:4;77:13;81:9;88:4,	jointers (1)
105:5,12	$53: 16$		7,10,10,14,24;92:20;95:2;98:3;99:13,14,	68:6Jonah (4)
imagine (2)		$85: 4$ instance (3)		
63:24;84:9	45:15	25:23;47:15;93:9Institution (1)	$\begin{aligned} & \text { 95:2;98:3;99:13,14, } \\ & \text { 16,19;100:3,10; } \end{aligned}$	$108: 15 ; 109: 6$
immediately (2)	indirect (1) $44: 11$		$\begin{aligned} & 16,19 ; 100: 3,10 ; \\ & 101: 6 ; 102: 1,6,17,21 \end{aligned}$	$111: 19 ; 115: 6$
91:10;110:24	44:11 individual (2)	$88: 2$intended (1)	103:19;108:4,24;	Jones (1)
immemorial (1)			issue (5)	48:2
$46: 6$	59:15;74:18	113:5		July (2)
impact (20)	industrial (3)	intention (1)$81: 22$	$\begin{aligned} & 11: 5 ; 33: 21 ; 45: 21 ; \\ & 69: 7 ; 80: 21 \end{aligned}$	$\begin{aligned} & 51: 15 ; 111: 24 \\ & \text { June (5) } \end{aligned}$
13:16,21;14:10;	$\begin{aligned} & 8: 1 ; 21: 24 ; 57: 24 \\ & \text { industry (13) } \end{aligned}$			
16:13;17:8,15;18:9;		81:22 interacting (1)	$\begin{aligned} & \text { 69:7;80:21 } \\ & \text { issues (15) } \end{aligned}$	$\begin{array}{\|l} \text { June (5) } \\ \text { 53:4;97:7;103:23; } \\ 106: 10 ; 111: 24 \end{array}$
19:2,8;21:17,17;	17:12;29:1;43:9;	60:10	$10: 7,9,15,16 ; 11: 19$	
22:13,24;23:2,3;24:8	46:11;47:17;58:3;	interaction (1)	$\begin{aligned} & 18: 14 ; 52: 19 ; 80: 15, \\ & 19 ; 81: 2 ; 83: 21 ; 85: 16 \\ & 110: 8,21 ; 111: 3 \end{aligned}$	$\begin{aligned} & \text { 106:10;111:24 } \\ & \text { junior (1) } \end{aligned}$
$\begin{aligned} & \text { 26:15;27:14;81:23; } \\ & 102: 2 \end{aligned}$	$\begin{aligned} & 76: 19 ; 82: 22 ; 107: 20 \\ & 109: 1 ; 110: 6,14 ; 111: 1 \end{aligned}$	83:15 interconnection (2)		49:23
impacted (5)	information (11)$16: 16 ; 41: 18,24 ;$	$\begin{array}{r} 38: 10 ; 48: 14 \\ \text { interested (1) } \end{array}$	item (1)	9:12,15
23:5;24:7;26:19			$\begin{gathered} 6: 24 \\ \text { items (1) } \end{gathered}$	jurisdictional (1)
27:2,6	$\begin{aligned} & 16: 16 ; 41: 18,24 \\ & 42: 9,17 ; 52: 2,17,18 \end{aligned}$	$\begin{array}{\|c} \text { interested (1) } \\ 47: 12 \end{array}$		36:22
impacts (9)	$\begin{gathered} \text { 60:18;94:21;97:6 } \\ \text { infrastructure (2) } \end{gathered}$	interesting (1)$47: 9$	62:19	Justin (6)
13:8;14:6,			Izzi (19)5:16,17; $6: 9,9$	$\begin{aligned} & 11: 3,18,24 ; 28: 2 \\ & 33: 10 ; 83: 19 \end{aligned}$
19:17;25:5,5;26:12;	$\begin{aligned} & \text { infrastructure (2) } \\ & 36: 9 ; 50: 4 \end{aligned}$	47:9interim (1)$65: 11$		
103:16	Ingalls (5)		$\begin{aligned} & 78: 22 ; 79: 2,5,7,11,18 ; \\ & 80: 4,6,8,15,19 ; 81: 2,7, \\ & 13 ; 117: 22 \end{aligned}$	Justin's (1)
impervious (1)	34:18,21,24;35:7	$\begin{gathered} 65: 11 \\ \text { internal (2) } \\ 50: 13 ; 52: 3 \end{gathered}$		51:2
24:22	44:19			K
importance (1)	$\begin{aligned} & \text { I-n-g-a-l-l-s (1) } \\ & 35: 1 \end{aligned}$	Interruption (8) $42: 7 ; 48: 13 ; 57: 23$		
important (6)	initial (1)	$\begin{aligned} & \text { 60:12;66:14;78:18 } \\ & 86: 18 ; 107: 14 \end{aligned}$	Jamestown (13)	
22:23;46:1,16				$39: 24 ; 61: 12 ; 63: 20$
47:19;81:20;116:13	$\begin{gathered} 110: 3 \\ \text { initially (1) } \end{gathered}$	into (44)	$14: 17,19 ; 56: 12,17$	$\begin{aligned} & 39: 24 ; 61: 12 ; 63: 20 ; \\ & 78: 9 ; 81: 11 \end{aligned}$
inch (1)	$91: 3$inject (1)		66:21;67:5,13,18;	$\begin{gathered} \text { keeping (1) } \\ 45: 12 \end{gathered}$
91:8			$\begin{aligned} & 78: 17 ; 79: 8 ; 84: 19 \\ & 101: 3,15 \end{aligned}$	
inches (1)	66:13	$\begin{aligned} & \text { 16:3;21:12;22:5;23:1, } \\ & 3 ; 35: 16 ; 38: 7 ; 39: 16 ; \end{aligned}$		Kellan (18)
86:5	inland (2)	40:15;42:2;46:3;	January (7)	$\begin{aligned} & 35: 8,14 ; 36: 2,2,20 \\ & 21 ; 38: 12 ; 39: 8 ; 40: 21 \end{aligned}$
include (3)	$\begin{aligned} & \text { 12:9;22:3 } \\ & \text { innovation (1) } \\ & \text { 43:6 } \end{aligned}$	$\begin{aligned} & \text { 49:15;54:4,7;56:6,13, } \\ & \text { 17,18;60:7;62:1;65:4, } \\ & 8,9,17,24 ; 66: 9,16 ; \end{aligned}$	$\begin{aligned} & \text { 22:21;54:18;55:14; } \\ & \text { 109:12,13,15;110:2 } \\ & \text { JD (1) } \end{aligned}$	
12:10;13:1;30:12				$\begin{aligned} & \text { 42:18;44:6,19;50:9, } \\ & \text { 19;54:3;60:18;64:18 } \end{aligned}$
included (1)				

67:8	large (15)	84:11	22:13;34:2;47:9;	60:23;62:2;74:5;
Kellen (4)	11:3;13:11;17:17,	less (6)	59:20	81:24;84:11
34:17,21,24;35:7	19;27:7;30:2;31:11;	30:11;31:1;76:3;	locally (1)	Madam (1)
K-e-I-I-e-n (1)	39:4,5;50:3;63:24;	113:20,20,20	47:13	97:3
34:24	69:21;85:8;86:2;	level (7)	located (2)	magnetic (3)
Kevin (3)	95:16	36:22;40:4;46:12,	48:7,8	17:19;18:20;29:14
11:6;33:10;107:19	larger (5)	13;53:15;70:9;92:12	location (6)	magnetometer (1)
kick-up (1)	65:20;67:14;91:7;	license (2)	21:19,24;23:9;	60:17
19:13	92:3;101:10	99:24;102:11	82:16;88:17;94:14	Main (27)
kilometer (1)	last (5)	licensed (1)	locations (3)	8:22;20:3;23:12;
78:16	40:6;58:7;59:17;	99:22	15:21;73:9;82:4	33:3,4,5;34:17;35:2,
kilometers (3)	113:14;117:19	life (1)	logistics (1)	5;44:18;45:2,5;48:19,
58:9;68:24;75:12	Lastly (1)	32:15	9:5	22;49:6;56:20;57:1,3,
kilovolt (1)	55:16	lifetime (3)	logs (1)	12;67:2;77:21;78:20;
7:7	late (2)	25:12;26:6;77:15	62:19	79:23;86:15;117:1,5,
kind (21)	56:18;101:20	lifts (2)	long (9)	16
12:16;13:4,19;16:1,	later (5)	62:4;66:8	52:17;58:14;85:9;	Maine (1)
22;17:4;19:22;23:18;	23:4;50:18;54:16;	limit (2)	88:10;91:8,21;95:13;	107:24
24:15,23;25:8;26:10;	67:3;68:13	22:24;56:9	$99: 2 ; 108: 16$	mainly (1)
32:20;45:20;53:15;	Laura (1)	limited (3)	longer (1)	35:22
55:24;62:15;97:23,	11:6	13:13;80:23;110:24	91:17	maintain (2)
24;108:11;115:11	law (1)	limits (2)	look (13)	46:2;53:2
kinds (1)	33:5	24:1,1	14:21;16:18,19;	maintenance (3)
16:23	lay (24)	line (13)	18:7;24:13;47:8;	25:13;77:2,3
Kingstown (2)	27:8;29:11;31:22;	21:13;37:9;38:3;	70:16;76:2;77:19;	major (8)
7:12;22:8	62:7;66:10,11,23;	39:18;53:20;57:5;	104:11;114:11,22;	19:9;23:4;26:15,16;
knife (1)	68:12,12,23;69:1;	82:2;95:7,8,9,13,15;	116:9	27:16;43:22;47:15;
68:20	73:4,5;75:20;76:13,	101:2	looked (1)	83:21
knock (1)	20;78:20,23,24;79:8,	lines (4)	19:8	makes (3)
15:6	13,22,23,23	104:12,15,17;	looking (10)	36:15;80:2;86:10
knocked (1)	layer (2)	105:11	10:20;16:22;31:2;	making (7)
16:10	15:7;74:20	linked (1)	85:17;88:15;114:5,	7:11;13:1;42:8,16,
knowledge (2)	laying (5)	17:3	15,20;116:14;117:3	17;43:19;104:6
101:23;104:8	40:11;63:19;67:22;	list (1)	looks (1)	manage (3)
known (2)	79:18,20	94:9	66:7	58:21;87:16;107:4
82:12;99:24	lead (3)	literally (2)	loop (2)	managed (1)
knows (1)	15:5;46:9;58:21	68:22;91:10	13:3;62:14	90:13
25:23	leader (1)	literature (2)	$\boldsymbol{l o t}(20)$	Management (11)
Kyle (4)	59:22	18:17,23	9:18;10:6,6,17,18;	5:5;7:14,16;50:17;
$106: 16,18,21,23$	leading (2)	little (21)	17:20,20;20:14,14,15,	51:7,19;58:8,24;
K-y-I-e (1)	35:19;36:12	18:18;23:3;24:5;	18;24:15;32:21;36:8;	59:11;93:20;94:4
106:21	learned (1)	29:21;35:2;52:21,24;	38:1;47:17,21;50:10;	manager (10)
L	$32: 3$ lease (5)	54:4,16;86:10;91:6,7, 18;92:1;95:19;96:22;	69:21;91:3 lots (1)	$40: 3 ; 49: 10 ; 50: 3,6 ;$ $57 \cdot 16,19 \cdot 58 \cdot 20 \cdot 99 \cdot 1$
L	lease (5) 32:21,21;37:4,6;	97:19;98:9;110:11;	lots (1) $69: 21$	$\begin{aligned} & 57: 16,19 ; 58: 20 ; 99: 1, \\ & 2 ; 107: 18 \end{aligned}$
labor (3)	89:23	113:24;115:4	low (6)	managers (1)
59:20;100:12;103:9	leases (1)	live (1)	71:1,3;82:19,21;	81:10
lack (2)	107:7	27:1	83:7,10	mandate (1)
24:20,21	least (6)	LLC (3)	lower (1)	39:5
laid (3)	16:2;17:7;21:17,17,	36:4,5,6	84:1	mandated (1)
17:3;63:22;74:21	17;29:3	load (1)	lowered (1)	39:1
land (3)	leave (6)	21:12	65:11	maneuverability (1)
21:22;23:19;95:3	27:18;66:24;67:12;	loading (2)	lying (1)	40:18
landfall (10)	70:23;86:24;87:2	18:7,7	$114: 17$	manned (1)
7:12,24;13:11;	led (1)	lobster (12)		$25: 2$
37:16;54:2;55:24;	107:18	17:21;107:22;	M	manufactured (3)
56:3;64:17,19;82:16	left (4)	108:15;109:6;111:1;		47:14;65:6;81:5
landfill (1)	68:1;104:14,15,20	112:1;113:13,16,17,	machine (15)	manufacturing (2)
$\xrightarrow{\text { 23:15 }}$ landowners (1)	$\begin{gathered} \text { legend (1) } \\ 95: 18 \end{gathered}$	lobsters (3)	$\begin{aligned} & 15: 2,6 ; 62: 7,21,22 \\ & \text { 64:8,11;66:12,17; } \end{aligned}$	$\begin{aligned} & \text { 44:9;85:4 } \\ & \text { many (9) } \end{aligned}$
38:6	length (2)	111:18;112:12;	71:13,14,15,16;80:1;	11:7;13:7;16:23;
lands (1)	7:9;8:18	113:12	81:24	51:6;72:15;84:16;
46:4	lengths (1)	local (4)	machines (5)	91:2;103:18;112:20

map (1)	measures (2)	48:12,15	mixture (1)	moves (5)
94:22	7:8;15:23	meters (13)	91:1	50:23;55:24;65:22;
maps (1)	measuring (1)	61:20;62:5,16;65:2;	mobility (3)	68:22;71:17
16:16	70:6	69:24;75:16,18;82:1,	63:18;70:19;77:10	moving (5)
marine (10)	mechanical (4)	1,2,5,8;85:9	model (3)	63:6;82:3,5;83:4;
50:14;65:1,16;	14:16,24;19:10;	method (5)	60:20,21;91:22	93:8
80:20;87:23,23;89:8,	68:15	14:14;20:22;37:22;	models (2)	much (21)
10;99:11,20	medical (1)	63:14;112:22	26:21;73:23	11:14;17:19;21:1,5
mariner's (1)	86:24	methodology (5)	mollusks (2)	24:1;26:4;27:13;31:9,
99:23	meet (3)	16:1;61:3;73:24;	27:1;115:10	10;33:15;40:11,18;
marked (1)	24:18;33:20;39:15	111:20,22	moment (1)	71:16;75:10;77:21;
105:3	meeting (12)	methods (3)	81:12	78:10;84:1;85:7;
Massachusetts (1)	5:5;6:2,3;9:5,7,20;	13:24;14:15;17:7	moments (2)	90:20;91:15;114:3
107:23	39:5;52:5,14,19;53:2;	might (7)	34:5;56:14	mud (1)
masses (2)	118:14	29:10;35:2;48:23;	money (7)	97:23
95:3;113:18	meetings (8)	59:17;74:4;91:23;	20:15,16,18;41:1,4;	multiple (2)
massive (1)	9:20;10:8,10,12,14,	116:20	44:15,16	23:2;80:22
26:14	21;94:5,5	mile (2)	monitoring (4)	multitude (1)
masters (4)	meets (1)	8:19;38:	27:21;90:4;108:2;	105:17
49:20;58:1;63:4;	23:14	miles (9)	117:13	munitions (1)
99:20	Megan (15)	7:9;12:19;37:10,11;	month (4)	60:18
master's (2)	40:2;48:22;49:2,5,	54:24;61:17;63:7;	92:6;108:20,20;	mussels (1)
35:20;107:12	7;50:5;51:11;53:7,10;	75:13;113:18	111:23	27:1
mat (1)	54:14;55:16;56:11,	milestone (1)	months (10)	must (1)
17:2	21;75:8;97:9	40:6	23:1;27:10;54:13,	39:15
material (6)	M-e-g-a-n (1)	milestones (3)	19,21;58:16;92:4,7;	Myself (1)
21:11;88:5;98:1,5,	49:5	39:15,19;40:19	98:4;111:24	11:6
5;114:2	Megan's (2)	military (1)	moorings (1)	
materials (4)	101:19;109:17	23:16	100:17	\mathbf{N}
29:15,17;47:13,14	megawatt (1)	milligauss (1)	more (28)	
math (1)	48:5	18:11	14:11,18,20;21:7;	name (8)
86:5	megawatts (5)	millimeters (3)	25:2;26:8;27:19;	33:5;34:22;35:6;
matrix (1)	13:12;18:8;36:16;	74:19;85:22,24	28:13;29:22;32:4;	49:3;57:9;87:7;98:17;
83:3	39:3,9	million (1)	36:4,20;40:1;45:20;	106:19
matter (9)	Member (2)	58:10	47:21;50:2;53:3;54:4,	Narragansett (16)
5:8;6:1,17,24;7:3;	86:24;97:3	millions (1)	11;64:7;71:16;86:10;	$7: 11 ; 8: 16 ; 65: 17$
9:17;28:18;118:3,3	members (16)	43:14	97:13;102:2;103:16;	$69: 20 ; 88: 7,9 ; 90: 19$
mattress (3)	5:9,23;6:12;11:23;	mind (3)	106:11;110:11;	92:19;100:2,10;
17:2;73:3,4	33:1;44:20;46:24;	11:17;40:1;74:5	113:20	101:4,6;102:6,9;
mattresses (11)	77:23;86:14;96:18;	Mine (1)	morning (1)	103:19;112:7
$7: 22 ; 17: 10 ; 28: 11$	106:13;109:1;111:1;	45:10	10:13	nation (2)
$29: 2,5,10,11,13 ; 72: 1$	117:19;118:10,18	minimal (3)	most (13)	38:19,24
73:6,8	membership (1)	26:5;102:2;103:16	17:1,12;20:2;27:5;	National (3)
may (12)	99:15	minimally (1)	38:18,24;47:14;	20:18,18;99:11
7:22;14:3;37:15;	memorandum (1)	27:6	64:11;76:6;88:11;	natural (2)
45:11;48:18;62:18;	45:17	minimize (2)	95:2;102:12;115:19	18:19;70:7
74:13;94:17;97:3;	Memorial (2)	19:2,8	mostly (1)	naturally (1)
100:15;104:7;116:6	100:12;103:9	minimizes (3)	22:4	29:11
maybe (7)	mention (3)	13:19,21;25:10	motion (10)	nature (4)
80:16;86:19;91:7;	25:4;50:10;54:3	minimizing (1)	6:4,7;118:2,5,7,13,	16:11;18:24;25:2
109:23;113:13,23;	mentioned (14)	13:16	14,15,16,19	30:1
114:3	16:4;22:18;26:14;	minutes (4)	mouth (1)	naught (1)
McGovern (5)	32:14;41:23;44:21;	6:2;33:12;72:4;	66:7	61:18
5:12,13;48:5,16;	45:11;48:16;50:19;	74:13	move (15)	nautical (2)
118:15	63:9,15;88:23;90:15;	missed (2)	10:12,16,20,22;	61:17;75:13
mean (9)	97:9	25:22;115:13	11:11;12:12;66:21;	navigate (1)
63:22;69:10;71:24;	merge (1)	mistake (1)	69:7;75:16;81:22;	17:23
81:4;82:3;83:19,21;	38:2	45:3	82:1,11;91:10;92:9;	near (14)
104:13;115:5	met (1)	mitigated (1)	93:12	16:13;20:6,7;24:15;
means (3)	70:2	84:8	moved (7)	26:18;65:21;66:2,10,
18:3;70:3,3	meter (4)	mitigation (5)	6:6;11:5;15:16;	13;68:1;78:15;79:22;
measure (1)	61:20,21;77:12,12		63:7;65:23;113:18;	$114: 4 ; 116: 11$
15:10	metering (2)	$99: 16 ; 117: 8$	118:6	nearby (1)

23:10	North (9)	88:1	38:2,9;46:4,23;53:17;	ourselves (1)
necessarily (2)	7:12;8:7,10,11;	o'clock (1)	66:3,10	42:2
48:11;70:24	22:8;58:3;65:7;81:5;	10:13	onto (2)	out (42)
need (22)	98:23	October (10)	71:19;72:3	14:17;15:4,20;
23:8;27:23;38:12;	Northeast (2)	6:3;22:20;54:20,22;	open (2)	16:12,17;18:16;
39:5,6;47:11;61:16,	104:24;105:8	55:4;56:18;97:10;	53:4;63:20	20:16,17;21:11;
24;63:7,21,24;64:1,2,	northern (2)	101:20;103:15;	operate (1)	25:15,24;29:23;30:5;
4;70:22;72:18;74:4;	8:15;67:13	109:18	19:11	31:6,21;32:3;37:4,6,
76:13;77:18;83:12;	northern-most (1)	off (11)	operated (1)	21;40:16;44:5;46:2,
102:11;112:21	56:3	11:2;12:3,24;15:6	63:1	21;53:20;55:11,24;
needed (4)	north-northwest (1)	16:10,15;20:10;22:8;	operating (1)	56:6;58:11;59:22;
21:21;24:19;67:13;	8:8	24:4;37:21;66:8	39:17	61:15;65:17;66:21;
110:9	northwest (1)	Office (1)	operation (4)	71:24;75:4;77:12;
needs (5)	8:5	99:10	44:5;79:19;84:2	78:16;84:1;100:15,
9:14;23:14;38:13	noted (3)	Officer	85:13	$16,19 ; 101: 4 ; 104: 11$
51:12;68:4	52:13,19;54:8	87:14	operational (4)	outer (1)
negatives (1)	notice (1)	offload (1)	32:4,17,18;40:12	60:19
13:20	13:1	67:9	operations (6)	outline (2)
neighborhood (1)	noticed (1)	offshore (26)	43:23;67:7;77:2,3;	12:17;16:14
22:13	17:9	8:3;9:12,16;12:15,	78:6,12	outlined (2)
neither (1)	notwithstanding (1)	18,23;13:8;21:10;	opinion (2)	12:4;22:3
83:7	113:3	35:24;36:12,13;37:5;	89:14;112:12	output (2)
Netic (1)	NOVEMBER (17)	38:8;39:6;43:9;46:4,	opportunity (2)	17:20;29:18
29:17	5:1,7;9:20;54:20,	8;50:4;53:17;58:7;	33:9;63:20	outreach (11)
nets (1)	22;55:4;56:19;97:10;	88:11,12;94:11;95:6;	opposed (3)	$45: 15 ; 46: 7,16$
72:2	100:15,16,19;101:20;	107:22;114:3	6:13;85:18;118:11	52:22;53:1;99:7;
new (12)	103:15;109:18;117:7,	often (1)	opposite (1)	102:14;108:24;110:5,
16:15,16;22:6;23:8,	18;118:4	91:13	31:17	11,14
13;26:10;35:23,23;	number (5)	oil (2)	option (1)	outside (6)
47:17;67:8;73:24;	$19: 6 ; 43: 4 ; 44: 1$	58:2,5	17:5	21:19;43:18;67:1;
88:21	$102: 11 ; 107: 21$	old (1)	options (1)	74:22;76:2;103:10
Newport (12)	numerous (1)	23:15	16:20	over (29)
87:12;94:8;101:10,	102:18	ole (1)	order (9)	9:19,19;10:8,14
$11 ; 102: 17 ; 104: 6,16$	O	86:3	$5: 4 ; 12: 15 ; 33: 20$	$14: 18 ; 16: 7,8 ; 22: 21$
news (1)	0	once (13)		
51:16	objectors (1)	62:10,23;65:4,15;	ordering (1)	63:7;72:22;73:4;
Nexans (7)	117:23	66:9;68:11;69:1;	110:23	77:15;85:9;88:9;
59:8,9,22;61:5;	observers (1)	71:18;80:8	ordnances (1)	95:19;96:5;104:14,
71:14;81:5;85:4	32:6	one (38)	42:	15;110:3,19;113:18;
N-e-x-a-n-s (1)	obstructions (1)	6:23,24;8:19;13:3	organisms (6)	114:22
59:8	42:5	14:16;17:1;19:7;	$91: 16 ; 92: 3,9 ; 93: 2$	overlap (3)
next (20)	obtained (2)	23:21;25:4;26:15;	$98: 7,8$	95:21;96:1,21
6:17;9:19;33:24;	99:18,23	27:8;28:6;32:7;37:15;		oversee (4)
40:1;48:19,22;57:3;	obviously (6)	38:4;44:21;45:8;60:9;	\emptyset	41:12;50:8;52:
$\begin{aligned} & \text { 65:16,18,24;67:21,23; } \\ & \text { 86:16;87:4;97:4,8; } \end{aligned}$	$\begin{aligned} & 11: 15 ; 27: 2 ; 30: 1 \\ & 44: 8 ; 76: 1 ; 84: 2 \end{aligned}$	$\begin{aligned} & \text { 67:6;68:3;78:16,20; } \\ & 79: 4,16 ; 83: 21 ; 84: 18 \end{aligned}$	Orste	$\begin{gathered} \text { 99:6 } \\ \text { oversight (2) } \end{gathered}$
98:13;106:15;117:7;	occur (13)	90:11,15,20;91:16;	12:7;20:17;35:9,1	45:18;50:17
118:3	9:14;20:5;39:2	92:2,5,14,16;94:6;	16,19,24;36:7,11	overview (3)
nicely (1)	53:22;54:13;97:7;	97:13;100:18;103:20	43:2,12;49:8,9,18	27:24;33:23;36:18
61:16	102:23,24;103:8,22,	ones (4)	50:9;57:14,15,19	own (6)
nine (1)	23;109:18;114:16	27:16;76:20;90:5	58:15;59:3;80:16	$42: 13 ; 47: 19 ; 71: 17$
92:7	occurring (2)	105:17	98:23,24;99:3,10;	$77: 6 ; 81: 10 ; 85: 7$
nitty-gritty (1)	105:24;106:2	ongoing (2)	$102: 14 ; 106: 24 ; 107: 1$	owned (2)
$40: 3$	occurs (4)	$52: 9 ; 80: 24$	$4,17$	$8: 9 ; 72: 19$
NOAA (2)	97:11;100:2;	only (18)		oysters (3)
12:24;99:10	102:20;106:10	6:24;9:12,14;30:12	0	114:1,3,4
noise (1)	Ocean (12)	35:13;49:12;64:2;		
22:16	7:14;27:1;46:22;	74:7;81:23;82:1,11;	OSAMP (6)	P
none (3) ${ }^{\text {a }}$	51:7;93:19,23;94:3;	83:7;84:10,18;85:12,	$47: 8 ; 52: 6 ; 94$	
11:24;33:2;56:24	101:4;103:24;104:2,	15;107:6;115:14	95:5,5;97:1	package (6)
normal (2)	24;105:8	onshore (11)	others (1)	$50: 12,21 ; 57: 16,19$
19:21;85:20	Oceanographic (1)	8:4,17;13:9;20:11;	$19: 15$	$58: 20 ; 99: 16$

pad (2)	Pearsall (4)	42:10	13;68:15,20;71:16;	post-procurement (1)
16:8,9	98:14,16,19;106:12	physical (1)	73:24;74:1	61:7
parallel (2)	P-e-a-r-s-a-l-l (1)	80:14	plowing (1)	posture (1)
8:15;12:19	98:20	physically (1)	19:12	117:15
parcel (1)	penetration (1)	93:8	plus (2)	post-year (1)
8:16	60:13	pick (5)	46:5;72:	114:7
Park (4)	Pennsylvania (1)	62:3;67:2,18,24;	pm (2)	potential (16)
7:12;8:1;37:18;	99:22	69:2	5:2;118:20	13:16,19;14:9;
38:1	people (6)	picked (1)	point (18)	16:18;17:15,24;
parking (1)	20:14;23:18;43:4,8;	68:4	11:8;18:12,12	18:14;22:16,24;23:1,
38:1	58:21;99:6	picture (3)	26:10;31:7;37:14;	3;25:11;39:20;60:18;
part (21)	per (5)	41:16;60:15;63:3	45:19;48:14,15;56:3;	68:9;73:12
11:3;13:15,15;	75:17,18;84:18;	piece (3)	61:18;64:19;68:23;	potentially (5)
15:19;17:14,22;	108:20;111:23	66:8,23;68:19	69:5;70:3,15;104:11;	15:15;19:15;24:8;
23:11;26:14;30:1;	percent (12)	pieces (2)	114:21	77:19;84:10
43:22;45:3;46:16;	14:3;72:8;73:15,21,	43:18;47:15	pointed (6)	potentials (1)
50:20;59:18;71:11;	22;96:6,11,12,15,22;	pink (2)	40:16;60:19;61:15;	16:16
79:19,19;88:8;99:15;	97:20,20	95:11,24	71:24;75:4;84:1	power (14)
102:10;116:16	percentage (1)	pipe (2)	pointer (1)	13:11,13;17:18,19;
partially (1)	96:2	65:5,6	95:1	23:9;38:10;39:1,11,
66:24	per-day (2)	pipelines (2)	pointing (1)	14,18;58:10,10;
participant (1)	75:7,11	28:7;58:6	95:7	62:22;112:19
94:3	perform (7)	pipes (1)	points (3)	powerful (2)
participate (1)	25:17;59:14;61:2;	16:6	34:4;48:16;53:20	31:1;71:16
10:24	62:10;68:6;69:15;	pit (4)	policy (2)	PPA (1)
participated (2)	76:6	21:9,11;37:20	99:11,12	13:12
10:21;61:5	performed (5)	65:17	polyethylene (4)	pre-application (1)
particular (13)	58:22;60:9;62:23;	pits (1)	65:5,6;72:2;74:24	27:21
7:13;9:13;17:10;	68:11;88:6	8:3	polygon (2)	preapproved (1)
34:8;59:12;62:12,23;	performing (2)	place (4)	95:13,24	59:13
74:6;93:18;100:24;	71:1,2	71:13,23;73:3;98:1	pop (1)	pre-construction (7)
101:5;105:16;117:12	performs (1)	placed (2)	15:20	109:24;112:14;
particularly (3)	90:6	66:18;72:3	popular (3)	115:5,8,11,15,21
50:11;52:23;54:2	period (4)	places (1)	17:1;101:6,9	predict (1)
parties (1)	65:12;67:7;79:16;	80:17	population (5)	76:1
10:18	83:5	placing (1)	27:15;110:19;	preexisting (1)
partner (2)	Periodic (1)	66:6	113:1,13;114:20	112:3
33:6;86:15	26:7	Plan (12)	Port (3)	pre-fluidize (1)
partnership (1)	permanent (2)	7:14;9:2;15:21;	43:16;65:7;67:8	68:18
$108: 8$	14:7;42:11	59:11;76:12;77:5;	Portal (2)	pre-lay (3)
parts (3)	permissions (2)	81:15;93:20;94:4;	105:1,9	62:10,11;64:2
12:6;88:10;92:20	21:21;22:7	108:2,4;110:3	portfolio (3)	preliminary (2)
Party (1)	permit (3)	planned (2)	43:23;99:7;107:6	60:5,6
99:14	40:6;51:18;77:5	19:24;85:7	portion (4)	preparation (1)
pass (2)	permits (1)	planning (6)	12:7;38:2;40:9	$15: 22$
62:7;103:18	51:12	41:18;74:3;80:22;	95:20	prepare (2)
Passage (10)	permitting (10)	99:12;110:6;117:4	portions (1)	50:20;94:22
7:11;12:10,20;56:6;	34:2;40:2;41:12;	plans (1)	54:1	prepared (2)
65:17;101:3,11;	42:14,15;49:10;50:6,	16:21	ports (1)	52:3;61:10
103:3,4;104:6	9,11,15	plate (1)	43:15	pre-project (1)
passed (1)	perpendicular (2)	86:4	position (6)	45:19
66:2	62:4;82:5	play (1)	59:3;65:24;82:11;	presence (2)
past (5)	person (1)	39:4	87:13;98:24;107:17	83:20;115:22
51:14;53:4;67:4;	11:5	please (17)	positive (2)	Present (17)
68:24;77:12	phase (3)	11:24;34:16,20,22;	53:5;73:1	5:11,13,15,17,19,
patience (2)	44:17;91:17;92:5	49:3,16;53:24;55:17;	possible (3)	24;6:12;8:22;11:18;
5:4;32:22	phased (2)	57:7,9,19;67:21;87:7;	15:24;31:16;38:6	32:9;33:9,22;86:16;
paved (1)	91:20;97:16	98:15,17;106:17,19	possibly (1)	111:11;117:10;
8:12	phases (2)	pleasure (1)	16:24	118:10,18
payers (1)	50:24;91:21	100:8	post (1)	presentation (2)
40:21	PhD (1)	plow (14)	58:4	11:18;117:1
peak (2)	87:23	14:16,17,20;19:10,	post-contract (1)	presented (1)
18:7,7	phenomenal (1)	11;27:2;62:18;66:12,	61:2	30:3

preservation (1)	27:9	111:12;112:21,23;	put (17)	92:16,24
45:14	procure (1)	115:15	11:15;18:16;21:1;	ranges (1)
presumption (1)	60:21	propulsion (1)	23:13;29:7,9,13;	100:7
34:7	procurement (4)	71:17	52:24;60:21;71:2,19;	ranging (1)
presumptive (1)	59:10,12;61:1,7	protect (2)	72:22;83:2;92:18;	61:18
117:11	produce (1)	72:18,24	94:12,13;117:8	rapid (1)
pretty (14)	0:20	protected (2)		75:14
18:11;21:1;26:4;	products (1)	18:8;73:8	Q	rate (1)
27:11;28:22;31:9,10;	43:11	protection (23)		40:21
84:24;85:10,20;86:2;	professional (6)	7:21;14:5;16:6;	qualify (2)	rather (3)
101:9;116:10,13	35:18;57:21;87:20;	17:2;18:9,10;28:8;	$51: 17 ; 89: 12$	70:21;71:4;113:12
prevent (1)	99:9,21;107:10	$71: 6,8,23,24 ; 72: 8,22$	quality (4)	reach (3)
68:9	profile (1)	73:13,16,20;74:4,11;	24:19;59:10;68:9;	46:2;83:8;84:10
previous (1)	15:11	77:8,19,20;82:18;	81:10	reaching (3)
6:2	profiling (1)	97:17	quantity (1)	8:8,10,16
previously (3)	31:23	protects (1)	83:3	reach-out (1)
88:18;94:17;103:6	Program (6)	74:24	quarterly (1)	45:20
primarily (5)	7:16;10:2,4;33:20;	protocols (1)	53:15	read (3)
$38: 4 ; 102: 23$	43:22;107:18	111:12	quick (3)	7:4;63:11;72:4
107:21;111:17;	programs (1)	proud (2)	45:10;71:9;81:14	realize (1)
113:12	111:7	58:11,12	quicker (1)	45:16
primary (3)	progress (1)	Prov (1)	76:18	really (27)
$14: 15 ; 90: 5 ; 108: 14$	76:23	43:16	quickly (2)	23:17;24:10,11;
prime (1)	project (47)	prove (1)	43:5;99:6	25:14;26:18;28:18;
21:24	7:8;10:2;12:4,6,18;	19:2	quite (3)	30:23;31:5,6;41:20;
principal (1)	13:10;17:10;20:10;	provide (4)	31:10;77:13;84:24	42:12;43:7,10,11;
11:5	23:11;24:12;25:12;	52:4;97:6;108:21;	Quonset (16)	45:10,10,21;46:1,15;
prior (2)	26:6,18;30:2;32:16;	112:13	7:12,24;8:9;21:21;	53:5;81:20;83:20;
8:23;107:17	33:23;34:1;35:11,13;	provided (3)	23:16;37:17,17,21;	85:6;100:7;113:15,
private (1)	36:18;38:13;40:23;	51:4;52:2;94:9	38:1;43:22,22;56:3;	21;116:9
38:5	41:2,4;43:13;44:11;	Providence (5)	64:19;65:7;95:15;	ream (1)
probably (9)	49:11,12,16;50:2,22,	43:3,7;67:8,11;	101:2	65:2
$21: 8 ; 26: 2 ; 31: 15,15$	23;51:12,16;53:1,2,6,	$93: 10$	quorum (1)	reason (2)
$45: 6,10 ; 65: 19 ; 97: 8$	14,16;58:16;59:2,12;	providing (1)	87:3	23:12;25:23
114:4	67:10;81:1;89:18,22;	$52: 18$		reasonable (4)
problem (3)	107:6	PTA (1)	\mathbf{R}	25:18;26:19;78:10;
14:5;25:14;62:18	projection (1)	40:19		112:13
problematic (1)	74:8	pubic (1)	race (11)	reasons (2)
14:23 probems (1)	projects (5)	7:2	102:17;103:24;	74:8;75:24
problems (1)	26:11;39:6;50:4;	public (8)	104:2,16,21;105:2,19,	rebury (2)
30:21	59:11;107:5	13:1;20:13;21:23;	$20 ; 106: 1,4,6$	20:19;21:13
procedure (1)	project's (1)	24:3;39:12;52:23;	races (10)	rebuttable (1)
$59: 10$	39:22	94:5;117:24	94:10,11,12;97:7	34:7
procedures (1)	promoted (1)	pull (6)	103:10,18,21,21	received (4)
70:14	49:24	21:12;65:4;66:3;	104:18;105:17	18:21;30:10;40:6;
proceed (3)	proper (2)	94:17;100:20;105:3	racing (8)	$51: 15$
34:16;48:18;87:2	13:17;25:9	pulled (3)	$100: 8 ; 102: 8,9,20,$	receiving (2)
proceeded (1)	properly (1)	65:3,8;68:22	23,24;103:8,16	35:21;41:24
58:2	18:2	pulls (1)	raise (6)	recently (2)
proceeding (1)	properties (1)	68:14	34:20;49:1;57:7;	53:3;88:11
37:1	46:14	purchase (3)	98:15;106:17;114:2	recess (1)
proceedings (2)	property (7)	39:11,14,18	raising (1)	86:21
5:2;118:20	8:6,7,8,15;37:17;	purchased (1)	102:5	recognize (5)
process (28)	38:5,7	44:14	rake (2)	$11: 3,13 ; 46: 15$
9:7;12:24;15:1,16;	proposal (2)	purple (4)	$62: 15,16$	$89: 10 ; 95: 2$
17:15;19:10;22:9;	13:3;116:16	38:3;95:24;96:12,	Ramond (1)	recognized (2)
32:7;50:15;59:15,18,	proposals (1)	13	5:22	11:15;89:4
24;60:1;61:6,14;62:9;	32:21	purple/red (1)	random (1)	recommence (1)
65:15;67:22;70:13;	propose (1) $108 \cdot 4$	101:2	$112: 5$	$117: 17$
88:21;91:2;92:22	108:4 proposed (12)	purpose (1) 23:14	112:5	$114: 7$
93:7;97:24	7:8,9;8:18;9:13,23,	purposes (3)	range (5)	record (13)
procreate (1)	24;45:17;101:16;	74:3;75:1;113:6	31:10,12;77:11;	5:23;34:23;35:6;

49:4;56:2;57:10;74:1;	relation (2)	18,20;18:20	26:22;43:13;91	16:24;20:1;21:18;
86:22,23,23;87:8;	81:18;101:13	90:13,15	110:19;111:2	24:17;25:10;68:10;
98:18;106:20	relations (3)	represen	trac	69:22;70:16,20,22;
recovery (9)	46:9;99:1,	33:7;109:3;110:17	24:2	71:1,2,3,12,22;76:3;
:21,21,23;91:12	relat	presentatives (2)	trench	82:19,19,20,21,23;
20;97:14,16,21,24	:2	12:23	5:4	83:3,7,9,13,14,18,22;
recreational (31)	relat	representing	retu	84:1,2
22:24;24:15;25:5	,	8:22	:21;93	risks (1)
27:20;34:8;81:21;	83:22;96:20,24	represents	returning (2)	26:5
90:4,12;93:22;94:1,2,	97:14,16;115:6,	30:11;58:9;96:	93:3;97:1	River (1)
6,15;95:12,17,18,22;	116:5	request (7)	review (7)	93:10
96:2,6;100:2,5,9;	relativel	22:12;25:16	7:1;8:24;10	road (2)
101:7,7,24;102:3	19:18;27:6	17;34:9;9	11:19;50:23;5	8:13,18
103:6;109:3;116:12,	relevant (2)	105:4	reviewed (2)	roads (4)
20;117:11	9:8;107:	requested	19:16;90:1	22:4;24:20,21;38
recreationally (2)	relies (1)	10;10:8;17	reviewing (2)	Robin (4)
108:22;111:8	33:16	:9;22:11	12:8;52:15	8:22;33:5;
red (8)	relocatio	requests (2)	Revolution (5)	116:18
13:2;52:6;95:	81:15	27:18;52:1	7:3;9:11;19:3;33:7	robustnes
104:12,17;105:11	rely (1)	require	8,16;35:11,13,17	113:2
redefined (1)	113:20	15;8:2;16	36:4,5,6,18,21;38:13,	rock (11)
74:2	re	23:24;26:2	17,22;39:4,7,8;42:19,	7:21,22;15:20;17:4;
reduce (3)	30:15	required	21,23;43:13,24,2	1:3;72:1,
19:5;31:15;75:5	remain (21:22;73:13;83	49:10,12,15;50:6,	82:11;98:6
reduces (1)	24:7;25	90:21;111:4	16;51:12;52:22;53:	rocks (5)
29:18	remaining	requirement	11;58:17,20;59:4;	28:11;31:
ductio	37:10	13;22:23	60:1,3;61:6;69:10	42:1;98:1
19:7;85	remains	requirements	72:7;76:20;89:18,22	role (12)
refer (2)	25:16	13:2;23:23;27:2	94:18;105:4;107:6;	35:10;39:4;41:1
104:17,20	rememb	33:20;77:5,6	108:1,8;109:7	5:12;50:20;51:23
referenced (1)	19:6	require	112:14,19;113	87:15;99:5;102:14;
92:15	remot		Rhode (50)	107:1,3,4
referred	63:1	requiri	0,2	roll (2)
51:2;52:11	remove	2	23,23;39:4,9,12,16	5:8;50:2
reflect (1)	:4	requisite	40:22;41:1;42:19,22	room (1)
5:23	removed	102:11	43:1,13,15,19;44:3;	53:2
egard (1)	:1	research (3)	45:22;48:6,7;51:18;	rope (1)
110:4	rendered	87:24;107:19;108:2	56:7,13;58:13;60:4;	66:1
regarding (4)	91:11	Resources (6)	77:12;81:9;88:4,7,9,	ropes (1)
7:1;45:14,17	renders	5:5;7:16;41:1	24;92:20;95:2;99:13,	62:19
regards (3)	89:14	46:22;87:17;90:	14,19;100:3,10	Ross (5)
$29: 19 ; 69: 10 ; 71: 8$	renewabl	respect (4)	101:6;102:1,6,17,21;	98:13,16
regional (1)	35:22;3	:16;81:18;83:19;	103:19;108:4,24;	106:11
36:8	rent (1)	112:12	110:5;112:7	R-o-s-s (1)
gional/l	100:18		RIDEM (7)	98:20
42:13	reply	12;118:1	8:9;111:16,	round (2)
egs (1)	6:14;11	responsibilities (3)	23;112:3,13;113:	59:16,17
24:13	repopu	87:15;99:5;107:3	right (36)	rounds (1)
gularly (2)	27:5	responsibility (1)	6:24;12:2	59:15
52:14,19	report		15:3;31:20;32:2	route (23)
regulation	6:21;	responsi	34:20;39:9,18;40:21	22:12-38
24:22	15:17;20:5;27:24;	50:17	42:8,18;43:3,15,19;	5:20;59:24;60:1,3,
regulations (2)	33:15;44:24;45:13;	rest (4)	44:3,5,23;45:8;48:3,	6,7,8;61:5,8;62:5;
23:24;52:6	51:3;54:9;59:1;82:23;	11:18;19	17;49:1;54:11;56:20;	73:16,20;78:8,16;
egulatory (1)	90:10,10,16,18;92:15,	40:8	57:7;58:17;59:3,23;	2:9,10;88:16;108:7
88:18	17,1	restricte	4:7;79:18;82	12:24
hone (1)	reporter	55:7	84:13;93:12;98:15;	routes (2)
60:7	62.7,48.13,57:23	restriction	106:17;116:2	61:17;105:19
late (1)	60:12;66:14;78:18;	26:13;76:1	rights (1)	routine (1)
94:2	86:18;107:14	restrictions (4)	39.21	25:19
elated (5)	reporting (1)	22:19;40:15;5	rigorous (2)	ROV (1)
9:17;36:9;104:16	$25: 21$	$55: 5$	$59: 10 ; 70: 13$	$62: 24$
107:5,18	reports (6)	result (5)	risk (30)	rule (1)

13:1	35:24	28:7;67:3;69:2;71:11;	seriously (1)	showing (1)
run (12)	Scallop (1)	91:7,13;92:3;118:8	20:22	73:21
14:10;62:11;63:9,	107:22	Secondary (22)	services (1)	shown (1)
16;64:3,9;99:12;	scallops (3)	7:20;14:5;16:5;	44:13	96:4
108:6,16,17;111:4;	113:24;114:2,3	18:9,10;71:6,8,23,24;	set (5)	shows (3)
112:2	scan (1)	72:8,22;73:13,16,20;	9:21;13:5;43:6;	69:22;77:11;94:24
running (4)	15:13	74:4,8,11;77:7,19;	47:23;76:15	shrink (1)
12:19;37:8;111:10;	scenario (1)	82:17;97:17;108:15	settle (2)	23:21
114:2	62:12	Seconded (3)	92:10;93:14	shrouded (1)
	schedule (22)	6:9;118:7,16	settles (2)	73:7
S	34:1;39:17,22;40:4,	Section (5)	66:19;80:1	shrunk (1)
	6,14,18;53:8,11,14,	7:15,16;46:13;47:9;	seven (10)	23:20
safe (2)	16;54:7,10;55:4,10;	94:6	16:5;68:11;72:17;	side (11)
65:13;71:12	56:11,14,15;75:8;	secured (1)	73:9,10;76:17;79:7;	65:1,1,7,16,16;66:3,
safety (2)	80:20;101:17,23	66:9	94:9,12;108:17	10;67:13;92:9;
23:22;24:3	scheduled (1)	sediment (25)	seven-day (1)	100:13;101:15
Sahagian (5)	118:1	15:7,10,13;19:11,	79:16	sightseeing (1)
5:10,11;6:6,7;86:24	scheduling (1)	13,20,21;21:3;26:22,	seven-day-a-week (1)	100:7
sail (1)	97:2	22;27:2;29:4,7,9;	75:21	signed (1)
100:8	scheme (2)	64:8;66:5,15,19;80:9,	several (4)	43:21
sailboat (3)	69:20;83:11	12;91:1,4;92:11;	10:8;33:22;90:24;	significant (7)
102:5,8,15	science (2)	93:11;97:23	117:9	18:12;26:23;46:19;
sailboats (1)	49:20;107:5	sediments (3)	severe (1)	63:21;77:16;108:24;
102:13	scientific (2)	29:12;93:8,14	77:17	110:5
sailing (2)	18:17,23	seeing (1)	shaded (2)	significantly (1)
100:8;104:18	scientists (2)	32:20	103:1,5	112:22
sailors (1)	87:16,16	seem (1)	shallow (6)	signing (1)
102:18	scope (1)	20:2	27:11;31:6;65:19;	22:8
same (13)	31:11	seems (4)	67:14;98:5;114:4	silt (1)
$17: 1 ; 32: 12 ; 47: 11$	scour (1)	84:23;86:9;113:19;	shallower (1)	$97: 23$
$58: 1 ; 69: 3 ; 78: 13,13$	73:2	116:7	$14: 18$	similar (9)
15;83:5;84:21,22,23;	screen (1)	segment (1)	share (1)	51:5;62:3;71:15;
101:1	55:17	65:18	68:19	82:4;91:23;93:9;
SAMP (3)	screenshots (2)	segments (1)	shell (2)	111:12,20,22
93:23;94:15;97:1	105:8,16	64:16	28:22,23	simple (1)
sample (5)	sea (5)	seismic (1)	shellfish (3)	76:12
108:19,20;111:22;	18:18;58:3;102:12;	15:13	113:24;114:13,14	simulator (1)
112:24;115:19	107:21;113:21	select (1)	shielding (4)	102:19
samples (3)	seabed (29)	112:5	18:10;29:15,19	simultaneous (2)
111:24;112:7,20	7:18;15:22;40:10;	selected (3)	85:18	79:21,23
sampling (4)	55:8;60:10,15;61:9,	59:4,9;60:3	Shields (1)	simultaneously (1)
111:20,22;112:22,	15;62:17,20;63:3,5,	selection (3)	102:16	79:20
22	14,18;64:2;65:11;	59:24;60:1;61:5	ship (2)	sinks (1)
samplings (1)	66:8,24;68:1,13,17,	self (1)	30:19;83:1	86:8
15:13	21;70:4,7,9,19;72:3;	80:10	shipping (1)	site (9)
Sanctuaries (1)	77:9,19	semimonthly (1)	70:18	15:6;41:13,23;
99:11	seafloor (9)	5:5	shipwrecks (1)	46:23;50:14;65:7;
sand (6)	41:14;42:2;87:17,	Senesco (1)	42:6	88:14,15;90:2
63:21,24;64:4,9,11;	22;88:5;90:24;91:1;	44:4	shore (12)	sites (1)
97:23	92:20;98:1	senior (4)	20:6,7;37:14,16;	20:3
sandy (1)	seal (1)	50:1;57:16,19	65:1,21;66:3,10,13;	Siting (7)
27:10	66:1	58:19	68:1;78:16;79:22	22:10,10;51:15;
Saunderstown (1)	sealed (1)	sense (3)	short (1)	88:20,21,23;89:2
101:3	65:10	17:21,23;18:10	75:24	sits (1)
SAV (3)	season (6)	separate (1)	shorter (1)	80:2
26:18,18,20	97:12;100:10,12;	72:3	100:13	$\boldsymbol{s i x}$ (15)
saw (1)	103:9,23;112:1	separation (4)	shortly (1)	7:18;13:18;45:1,4;
11:19	seasons (1)	69:20;73:1;78:10;	82:16	58:16;59:13;69:12,
saws (2)	100:13	83:11	show (7)	18;82:1;83:22;92:2,4;
66:13,15	seawall (3)	September (2)	36:19;53:13;55:22;	93:1,1;98:4
saying (1)	37:21,24,24	54:18;97:7	91:6;105:10,16,17	size (5)
81:18	Second (11)	series (1)	showed (2)	17:18;23:20;26:1;
scale (1)	6:8;15:5;17:16;	95:11	14:13;33:18	61:18;65:3

Skenyon (39)	91:16,20;92:21;	spot (1)	112:20;113:2	studying (5)
8:23;11:3,24;12:2;	93:13;95:3,13	39:7	stay (2)	87:21;88:4,9;91:2;
28:1,9,12,15,20;29:6,	Sound (20)	square (1)	29:12;77:14	98:2
9,21;30:1,7,9,17,23;	7:11;56:7,13,17;	85:24	steel (6)	stuff (4)
31:5,12,16,20;32:1,9,	77:13;88:7,10,10;	staff (24)	43:18;66:8;68:19;	17:24;47:10;86:10;
12,16,20,23,24;33:10;	92:20;100:3,11;	5:23;6:20,21;9:23;	73:7;74:23;98:6	116:11
37:12;38:8;40:16;	101:6;102:1,6,21;	10:3;11:2,4,5,7,8,10;	stenographer (2)	style (1)
52:14;61:15;64:21;	103:19;112:8,8;	13:16;19:16;20:5;	35:3;95:8	21:15
75:4;84:1,6;90:23	116:14,17	27:24;33:13,15;	step (2)	sub-bottom (1)
slide (1)	sounds (6)	44:24;51:2;52:9,14;	67:21;71:	31:23
37:15	85:16,17,19;	54:9;90:12;117:6	Steve (1)	subcommittee (2)
slight (1)	113:11;114:1;115:5	stage (8)	117:21	6:17,18
95:3	sources (1)	61:1,7;91:5,7,13,15,	stiff (1)	subject (3)
slightly (6)	39:2	24;92:3	86:7	36:24;58:1;117:5
69:14,23;84:2;	south (9)	stages (2)	stiffness (2)	subjected (1)
91:17;96:5;113:3	56:6,17;66:21;	60:5;91:5	60:14;75:1	92:21
slim (1)	67:17;79:8;81:7,8,10;	staggered (1)	still (11)	subject-matter (1)
66:16	84:19	114:23	18:23;21:4;23:22;	52:2
Sloan (2)	southern (2)	stakeholder (1)	24:18;26:9;71:4,21;	submarine (2)
11:6;33:11	56:12,16	94:4	87:2;113:1,5;115:7	7:6;63:1
slow (1)	space (1)	stakeholders (3)	stipulate (1)	Submerged (2)
92:23	43:7	12:21;109:1;110:15	15:17	26:17;46:4
small (10)	spacing (1)	stand (3)	stipulations (1)	submitted (3)
19:18;30:20;31:10,	23:23	47:19;48:23;76:4	11:10	37:3;52:7;94:18
12;35:23;63:1;65:11;	spare (1)	standard (3)	Stokesbury (1)	subsea (1)
84:11;91:8;92:9	67:6	17:12;29:1;82:22	107:19	58:5
smaller (1)	spatially (1)	Standing (1)	stomachs (1)	subsequent (1)
90:5	96:23	73:19	91:14	88:8
SMAST (2)	speak (2)	standpoint (1)	stone (1)	subsequently (2)
107:12,16	36:20;47:21	116:13	24:23	62:20;71:21
snags (2)	speaking (1)	start (18)	Stoney (1)	substation (15)
14:9;25:11	27:6	12:3;37:1;40:4	88:2	8:13,14,17;12:9;
soft (2)	special (13)	46:11;47:2;55:23;	stop (3)	20:12;22:6;23:7,9,13;
14:8;97:22	7:2,14,15;27:18,19;	64:17;65:12;66:10,	14:22;76:14;100:14	24:14,16;38:9,11;
soil (2)	28:10;34:7,12;93:19;	11;68:12;109:8,9,14;	stopover (1)	46:23;80:20
68:18;74:2	94:3,19;105:4;117:10	110:2,3,23;113:3	104:6	substations (4)
soils (2)	specialist (2)	started (6)	stopping (1)	23:22;36:11;37:5,7
60:14;74:6	94:22;107:2	12:24;15:3;58:4;	104:8	successful (1)
solar (1)	species (25)	70:10;88:14;89:23	stops (3)	49:24
35:24	17:20;19:14;23:2,3,	starting (3)	15:1;103:11,12	succession (3)
solely (2)	4;25:5;26:13,15,16,	47:17;59:13;109:21	store (1)	91:23;98:2,9
58:7,17	24;27:9,15;83:21;	starts (1)	67:9	sufficient (2)
solid (2)	108:13,14,15,23;	101:2	storm (2)	21:7;65:3
13:7;24:24	109:3,5;111:9;	state (44)	25:24;26:1	suitable (1)
solution (1)	113:19;114:11;	7:20;9:11,11,15,15;	storm-by-storm (1)	98:6
17:1	115:10,20,22	15:11;25:20;34:22;	77:17	summer (4)
someone (2)	specific (3)	35:6;36:22;37:11;	storms (2)	23:1;39:13;110:3;
26:3;118:4	10:9;48:11;97:24	39:16;41:1;46:12;	77:16;92:21	111:24
sometimes (5)	specifically (5)	47:13;48:6,7;49:3;	stormwater (2)	sun (1)
26:8;37:19;92:5,22,	26:12;48:6;54:11	51:11;53:22;54:2,12,	24:9,12	77:10
23	68:7;69:15	22;55:24;57:9;64:4,	straight (1)	sunk (1)
somewhat (1)	speed (2)	14;69:1;72:17;75:11;	28:4	62:20
93:9	9:4;75:16	84:17;87:7;88:22;	strata (1)	supervised (1)
sonars (2)	spell (6)	94:8;95:10,10,14;	112:6	94:21
15:14;63:2	34:22;49:3;57:9;	96:5,6;98:17;106:19;	stratified (1)	supplement (1)
soon (2)	87:7;98:17;106:19	108:5,6;112:24	112:5	112:13
89:23;93:14	spending (1)	statement (1)	studies (8)	supply (2)
sorry (7)	43:14	90:18	17:11;18:13;35:21;	47:23;58:22
21:10;22:21;45:5;	spent (8)	state's (1)	63:18;70:19;73:21;	supply-chain (5)
65:8;81:8;95:8;	10:5,8;36:10;44:15,	56:9	88:6;93:13	80:15,19;110:8,21;
115:12	16;87:21;88:9;110:13	stations (2)	study (4)	111:3
sort (9)	spoke (1)	$23: 23 ; 112: 6$	$87: 17 ; 110: 16$	support (1)
31:21;42:14;75:16;	64:18	statistical (2)	$112: 23 ; 115: 17$	33:17

supported (1)	44:7;46:18;56:14;	terms (5)	13:9;23:13	traditional (1)
99:13	61:14;63:6;71:22;	24:19;30:12;45:12;	timelines (2)	22:20
supporting (2)	91:20	77:9;96:23	25:19;100:19	traditionally (1)
52:18;80:24	talking (13)	terrible (2)	times (3)	24:21
Sure (27)	9:16;41:17;42:16;	113:14,14	45:12;68:23;84:16	traffic (5)
35:20;36:24;38:17;	45:13;53:21;55:6;	tested (1)	timing (1)	22:16;69:20;70:18;
40:2;41:17;42:8,16,	82:14;83:19;96:23;	31:18	96:21	83:1,11
17;47:16;52:5;57:22;	97:22;103:2;109:11;	testified (2)	tine (2)	transfer (1)
61:14;64:21;65:19;	116:7	75:8;88:18	62:13,15	44:2
66:5;67:23;68:8;	tangible (1)	testify (1)	tiny (2)	transit (1)
74:18;80:2;91:22;	43:10	117:23	91:6;93:	94:11
95:1,1;99:10;101:1;	target (14)	testimony (6)	tip (2)	transition (2)
$104: 13 ; 113: 21 ; 117: 5$	7:17,23;37:12;	33:19;34:11;89:15;	56:12,16	23:10;38:1
surface (6)	44:22;45:1,4;69:8,13,	101:19;109:17;117:8	Today (2)	transmission (7)
19:5;24:24;28:17;	16,23,24;70:1,11;	Texas (1)	5:7;11:8	7:6;8:5;12:10,19;
62:17;91:4;93:11	108:14	48:3	together (5)	22:5;36:9,10
surrounded (1)	targeted (3)	Thanks (2)	17:3;74:21,21;	transport (2)
28:22	108:13,22;111:8	32:22;33:10	79:15;83:2	44:4,10
survey (47)	teaching (1)	theoretical (2)	tonight (20)	transportation (1)
16:15;46:17;60:9,	87:24	19:2;26:9	6:21;9:9,16,18,20;	86:10
10,15,17;62:24;	team (9)	therefore (1)	12:5,8,12;33:9,14,16,	$\boldsymbol{t r a p}(14)$
71:21;82:12;107:13;	41:21,23;42:11,14;	14:4	19,22;36:3;41:8,22;	107:13,15;108:6,
108:7,11,12,13,14,16,	50:9,14,15;58:21;	therein (1)	51:21;63:12;73:19;	12,14,21;109:7;
17,21;109:2,8,20;	87:16	11:10	84:7	110:1;111:10,14,16;
110:1,6,10,15;111:5,	teams (3)	there'll (1)	tonight's (1)	115:14;116:1,11
7,10,12,13,14,16,24;	50:10,13;52:3	28:24	36:24	traps (5)
112:1,3,5,13,14,18,	tearing (1)	thesis (1)	took (6)	110:9,23;111:2,4;
24;113:4;115:5,8,15,	25:8	107:13	20:19;50:2;58:1;	115:6
19,21;116:4	technical (4)	thick (1)	84:24;105:13,14	trefoil (1)
surveyed (2)	59:20;60:10;90:9,	28:23	tool (2)	74:20
82:6,9	10	third (2)	16:22;62:19	t-r-e-f-o-i-l (1)
surveying (2)	technician (1)	59:16;91:15	$\boldsymbol{t o p}(10)$	74:20
46:20;115:12	49:21	third-party (1)	29:7,10;43:2;66:19;	trench (16)
surveyor (1)	technique (2)	50:23	68:2;70:6,8;73:4,5;	22:2;66:16,16,18,
58:3	64:2;75:15	though (1)	77:6	18;68:16,21;70:24;
surveys (7)	techniques (3)	19:17	topic (2)	79:19;80:3,3,8,11,12,
25:17,19,19;26:7;	60:22;63:19;79:24	thought (4)	42:18;93:16	13;86:8
46:21;60:7;108:4	technology (2)	12:12;45:2,5;83:21	total (8)	trenched (1)
sway (1)	13:24;16:1	thousand (2)	7:19;8:18;58:16;	20:12
82:8	teddy (1)	26:21;42:24	66:22;79:5;92:12;	trenches (1)
swear (1)	62:4	three (33)	108:17;109:22	78:5
34:19	teenager (1)	12:6;28:21,23;29:3;	touch (1)	trenching (19)
switch (1)	102:10	31:2;36:1;37:13;	12:13	32:3;58:5;60:23;
93:16	teeny (1)	44:22;45:6;50:1;	touched (1)	62:2,7;63:19;66:12;
SWORN (6)	$92: 1$	59:15;61:22,23;	96:3	68:13;70:9;71:2,3,14;
34:21;49:2;57:8;	temporarily (2)	70:21;74:18,20;	touching (1)	74:5;75:15;78:5,12;
87:6;98:16;106:18	21:12;25:1	75:13;83:8,24;84:4,7;	12:3	81:23,24;82:2
synonymous (1)	temporary (2)	88:9;90:20;91:5;92:4,	toughen (1)	tribal (1)
38:23	19:20;24:20	15,16;99:4;103:20;	28:13	46:9
systems (1)	$\operatorname{ten}(6)$	104:13,15,20;105:18	tourism (1)	tribes (4)
$30: 21$	10:13;19:7;26:7;	three-and-a-half (1)	94:7	46:2,8,24;47:7
	82:2,5;107:17 tend (2)	19:4 three-quarters (1)	toward (1)	try (6)
T	$\begin{array}{\|l\|} \hline \text { tend (2) } \\ \hline 27: 10 ; 103: 23 \end{array}$	$\begin{array}{\|l} \text { three-quarters (1) } \\ \text { 109:23 } \end{array}$	$55: 10$ towed (2)	$\begin{aligned} & 10: 19 ; 13: 23 ; 29: 15 \\ & 30: 16 ; 71: 20 ; 78: 9 \end{aligned}$
talk (19)	tends (2)	threshold (2)	65:7,22	trying (7)
13:23;33:24;40:1,3;	102:17,24	18:15,17	TOY (1)	$14: 1 ; 18: 2 ; 19: 8$
41:22;51:13;52:19,	tens (1)	throughout (2)	76:8	$26: 14 ; 28: 3 ; 31: 21 ;$
$21 ; 53: 24 ; 54: 16$	43:14	14:15;25:20	traced (1)	58:12
57:18;59:23;64:18;	term (5)	tie (1)	37:9	tubes (1)
$65: 18 ; 70: 1 ; 72: 11$	$22: 22 ; 69: 8 ; 71: 6$	$46: 12$	track (1)	$91: 8$
78:22;97:8;113:17	$75: 24 ; 93: 18$	tied (1)	$74: 1$	Tuesday (2)
talked (10)	termination (1)	100:17	tracks (3)	5:7;6:3
18:20;33:12;40:14;	39:20	tie-in (2)	104:24;105:1,2	tug (1)

65:23	underground (2)	users (1)	vicinity (1)	10:11;16:23
turbine (3)	21:1;45:22	21:17	90:22	weather (5)
48:2,11;80:16	Underneath (2)	uses (4)	view (1)	26:8;76:1,3,4;77:18
turbines (12)	37:24;38:4	66:13;68:18;71:15;	81:11	website (1)
12:8;36:15;37:4,5;	undertake (1)	111:11	Virginia (1)	53:2
40:12;43:19;48:7,10;	73:9	using (9)	98:3	weed (1)
79:9;81:3;88:15,17	undoubtedly (1)	13:4;14:15,20;	virtual (1)	91:5
turn (10)	38:17	41:18;48:1;64:24;	53:2	weekend (1)
11:18;33:2;36:17;	unexpected (1)	65:21;75:16;78:10	visual (1)	76:14
42:18;44:6;53:7;	25:8	usually (3)	62:24	weekly (1)
64:13;75:6;77:1;	unexploded (2)	16:6;29:11,12	voice (1)	10:12
78:19	42:6,8	Utilities (1)	61:13	weeks (4)
twice (2)	unforeseen (1)	39:12	voltage (1)	91:24;92:2;93:1,2
108:20;111:23	15:7	utility (1)	7:7	weigh (1)
twisted (1)	union (1)	36:8	Volvo (2)	89:14
74:21	59:20		103:24;104:2	weight (1)
twisting (1)	universally (1)	V	vulnerable (1)	80:10
75:2	18:14		27:13	welcome (1)
two (33)	University (2)	vague (1)		25:2
7:6;8:3;9:19,21;	88:1,2	12:16	W	Wesleyan (1)
12:18;14:15,23;19:1;	unless (3)	value (1)		87:24
20:19;22:21;27:17;	20:5;25:7;31:5	75:2	walk (1)	West (7)
32:18;37:5,7;55:2,3;	up (48)	variance (4)	53:19	7:11;8:14;12:9,20;
59:16,22;61:17;	9:4;12:9,16,19;	27:21;34:9,12;	Wallace (2)	56:6;65:17;101:3
66:13;68:2,23;73:2,8;	14:3;15:2,6,11,12;	117:12	94:7;97:6	wetland (3)
75:12;78:3,5,5,12;	19:1;21:2,12;28:13,	variances (1)	walls (1)	21:23;24:6,6
79:13,17;84:18;85:12	17;32:19;33:24;34:3,	27:17	80:12	wetlands (2)
tying (1)	6,13;35:19;37:3;43:6;	varies (1)	washed (1)	12:11;24:7
8:17	47:19,23;53:19;	78:7	31:6	what's (8)
Type (10)	55:17,23;57:5;58:10;	various (2)	watch (1)	16:19;28:5;46:3,12;
7:10;28:7;29:17;	61:13,19;62:3;67:2,	33:17;50:24	32:7	98:24;99:17;102:8;
39:14;42:15;44:10;	11,18,24;68:4;69:2;	vegetation (1)	watching (1)	107:1
75:15;83:4;115:8;	70:13;74:17;91:6;	26:17	93:13	whatsoever (1)
116:8	93:11;94:17;99:19;	vehicle (1)	water (16)	81:1
types (4)	100:20;105:3;115:7,	63:1	9:11;12:11;20:16;	whenever (1)
46:20;74:2;100:5;	17	ventless (13)	27:11;31:2;51:17;	28:23
114:1	up-and-down (1)	107:13,15;108:6,	54:10;55:11;56:9;	Whereas (1)
typical (1)	113:15	12,14,21;109:7;	65:16,19;67:14;	83:10
103:18	update (1)	110:1;111:10,14,16;	88:16;95:10,10;114:4	white (1)
typically (5)	22:14	115:6,14	waterfront (1)	113:12
$89: 11 ; 92: 3 ; 103: 8,$	upgraded (1)	venture (1)	$8: 1$	whole (11)
20,21	23:11	36:7	waterline (1)	21:1;28:14,16;
U	upmost (1)	verbatim (1) $61: 19$	$56: 1$ waters	47:23;53:16;74:23; $77 \cdot 8 \cdot 82 \cdot 8 \cdot 83 \cdot 1 \cdot 87 \cdot 21 ;$
	upon (2)	verification (3)	7:10,20;9:15;37:10,	96:6
Uh-hum (11)	8:23;110:8	50:21;51:1,9	11;48:7,10;53:22;	wide (1)
56:8;63:10;72:12,	upstart (1)	Verizon (1)	54:2,12,22;60:4;64:5,	82:1
14;74:15;75:9;85:11;	43:7	72:19	14;72:17;75:11;	willing (1)
91:19;93:4,17;96:16	URI (2)	versus (1)	84:18;96:5,7;108:5,6	17:14
Um (1)	18:21;53:4	82:20	wave (1)	WILLIS (10)
29:21	use (20)	vessel (21)	63:24	6:18,21;9:1,3;
unavoidable (1)	13:24;17:4,21;	48:2;65:21;67:2,17,	waves (5)	11:21,22;12:3;33:11;
19:22	23:18;24:19,22;	23;68:2,3,7,12,14,22,	63:21;64:4,9,12;	52:13,19
unburied (2)	29:15;32:6;43:21;	23;71:18;72:3;76:15;	77:10	winch (1)
20:13,13	62:2,17;63:19;64:10;	78:15,20;79:23;85:6,	way (25)	66:2
unclear (1)	68:6;74:8;76:21;	6,8	12:12;13:7;15:12,	Wind (85)
115:4	78:13;82:22;95:1;	vessels (7)	15;16:8,9;17:22,23,	7:3;9:11,13,16;
uncovered (1)	111:12	44:2;63:4;67:15;	23;18:2;20:12;21:1,	12:8,23;13:9;19:3;
25:22	used (13)	69:22;80:23;83:4,15	16;24:14;28:21;	20:10;33:7,8,16;
under (9)	7:22;16:19;23:16;	via (1)	29:24;47:2;52:18;	35:12,13,17,24;36:4,
$7: 16 ; 12: 11 ; 23: 12$	28:6;32:12;44:4;60:6,	$8: 1$	53:17;67:4;68:17,21,	$5,6,12,13,15,18,21$
$\begin{aligned} & 24: 22 ; 26: 16 ; 33: 21 \\ & 40: 19 ; 85: 1 ; 107: 19 \end{aligned}$	$\begin{aligned} & 7,21 ; 61: 4 ; 64: 8 ; 82: 24 \\ & 93: 19 \end{aligned}$	viable (2)	24;95:15;110:4	37:2,4,4,6,8;38:13,17,
40:19;85:1;107:19	93:19	60:8;116:20	ways (2)	22;39:4,6,7,8;40:8,11;

41:15,16;42:19,21,23;	work (46)	97:7;103:8,18;	106 (1)	109:16
43:1,9,13,19,24,24;	9:10,14,23,24;11:9,	109:22,23;110:13;	46:13	22nd (4)
44:5;45:23;46:8;48:6,	9,14;15:18;17:6;	112:6;113:14,14,15,	11 (1)	9:20;117:7,23;
10;49:10,12,16;50:7,	22:18,19;24:19;	15;115:4	6:3	118:4
8,16;52:22;53:11,17;	25:15,17;33:11,13,15;	year-one (1)	11.10.2 (1)	23 (6)
58:8,17,20;59:4;60:1;	34:3;35:13;43:11;	114:6	7:15	7:9;12:19;37:11;
61:6;69:11;72:7;	46:17;51:20;55:8;	year-round (1)	120 (1)	54:24;61:17;63:7
76:20;80:16;88:11,	58:2,7;59:14;66:23;	112:2	31:14	24/7 (2)
13,14,16;89:18,22;	68:7,8;69:15;74:9;	years (22)	135 (1)	76:6,21
107:6;108:1,8;	77:11;80:24,24;88:8,	20:19;22:22;25:13;	8:6	24-hour (2)
112:14,19;113:4	8,12;89:21;90:1,2,3,6;	26:7;27:5;32:18,18,	14 (3)	75:20;81:11
winding (1)	98:22;106:23,24;	19,21;36:1,13;46:5;	58:7;79:12,16	25 (6)
12:16	113:23	49:21;50:1;58:7,16;	16,000 (1)	25:13;32:18,19,21;
window (3)	worked (12)	90:20,24;92:15;99:4;	95:19	36:13;77:11
22:20;76:1,2	11:7;21:20;22:11,	107:17;108:18	18 (2)	250 (2)
Wind's (4)	14;24:10;38:5;49:21;	yellow/green (1)	21:7;58:16	75:16,18
60:4;94:18;105:4;	54:9;89:18;99:10,13;	95:4	19 (1)	275 (1)
109:7	107:20	York (2)	37:10	7:7
Winter (6)	worker (1)	35:23;88:22	1993 (2)	28 (1)
27:8,9;109:9,10,11,	24:3		57:22;58:1	79:17
14	workers (1)	Z	1st (4)	
wire (1)	44:14		54:18;55:8,12,13	3
66:2	working (13)	$\begin{gathered} \text { zero (1) } \\ 114: 21 \end{gathered}$	2	
$73: 7$	26:10;42:10,11;	zone (1)	2	$44: 12$
wish (1)	47:20,22,22;49:13;	71:22	2.5 (1)	3.1 (1)
117:16	58:4,17;107:16		69:24	61:24
within (18)	works (1)	0	2.9 (1)	3.2-3 (1)
7:20;8:12;9:11;	30:24		58:9	100:20
20:1;32:17;41:19;	world (3)	0.5 (1)	20 (1)	30 (1)
65:13;66:5;71:12,22;	18:4;36:16;88:11	62:16	58:21	86:5
78:10;81:11;88:6;	world-class (1)	01 (1)	2000 (1)	31st (2)
93:1;96:5;98:4;	41:20	31:17	58:4	54:18;55:14
115:20,24	world's (1)		2006 (1)	330 (1)
without (4)	36:11	1	111:11	61:18
13:8;30:10;34:13;	worldwide (1)		2008 (1)	34 (1)
87:2	42:15	1 (7)	49:22	68:24
witness (88)	worms (1)	5:1,7;61:19;100:15,	2013 (1)	
33:23,24;34:14,17,	27:1	15,16,19	89:24	4
24;35:4;40:1;44:23;	worry (1)	1,000 (2)	2017 (1)	
45:3,8,24;46:21;47:2,	113:20	44:7,15	60:9	4 (1)
16;48:1,9,14,17,20,	worst (3)	1,052 (1)	2018 (1)	7:10
22;49:5;57:2,3,11;	30:12;31:1;84:7	18:11	12:21	400 (4)
78:4,7,15,19;79:1,4,6,	worth (1)	1,200 (1)	2019 (2)	39:3,9;48:5;65:2
10,14,21;80:5,7,10,	109:23	37:20	39:13;59:13	49 (2)
18,21;81:4,8,16,22;	write (2)	1,600 (1)	2021-07-005 (1)	61:16;63:6
82:8,22;83:17,24;	25:18,18	36:15	7:3	
84:5,9,17,22;85:3,9,	wrote (2)	1.1.8 (1)	$2022 \text { (5) }$	5
11,14,21,24;86:3,7,	11:4;90:13	7:16	5:1,7;6:3;109:15;	
11,16;87:4,9;96:12,	WSP (1)	1.5 (3)	110:2	5 (2)
14,16,19;97:4,5,8,15,	49:23	58:10;61:20;115:4	2023 (6)	73:21;97:20
21;98:13,19;106:15,		10 (12)	40:5;54:5;104:7;	50 (2)
21;107:15;114:6,10,	Y	14:3;21:7;62:5;	105:24;109:10;110:2	62:16;82:8
116:3,15,22	yachting (3)	11,12,15,22;97:20	40:10;54:6;101:21;	36:6
witnesses (4)	94:8,10;97:12	10,000 (1)	104:9;106:2;109:18	50-year (1)
33:22;34:6;117:2,9	yachts (1)	46:5	2025 (2)	26:2
wondering (1)	94:11	100 (1)	39:18;40:13	
32:5	year (29)	37:3	2032 (1)	6
Woods (1)	22:18;26:13;39:1;	100-ton (1)	39:1	
88:1	40:15;54:8,13;55:5,	99:23	22 (1)	6 (2)
words (2)	11;76:10,11;91:17;	101 (2)	117:18	7:10;94:13
10:22;97:18	92:8,12,12,14,14,16;	8:10,11	22/'23 (1)	6:13 (1)

