Baseline Fishery Landings in Rhode Island from the Sunrise Wind Lease Area and Export Cable Route

Hauke Kite-Powell, Di Jin, and Michael Weir Marine Policy Center Woods Hole Oceanographic Institution

DRAFT

11 October 2022

Table of Contents

Table of Contents		. 1
List of Figures		. 2
List of Tables		. 2
List of Abbreviations		. 3
Summary		4
Introduction		. 5
Baseline commercial fishery landings and values, 200	08-2019	. 6
Commercial Fisheries Data Description		. 6
Commercial Fishery Landings from Wind Energy and		
Landed value and trips by month		12
Inter-annual price adjustments		13
Adjustment of lobster and Jonah crab data		15
Estimated indirect and induced economic impacts		16
Rhode Island-based charter fishing		
References		22
Appendix		26

List of Figures

Figure 1. Sunrise Wind Lease Area and Export Cable Route	5
Figure 2. Average monthly value of landings, Sunrise WLA, 2014-2019	12
Figure 3. Average monthly value of landings, Sunrise ECC, 2014-2019	13
Figure 4. Charter fishing locations, 2017-2021, identified in survey responses	19
List of Tables	
List of Tables	
Table 1. Sunrise Wind area parameters	
Table 2. Average annual value and quantity of commercial fisheries landings by area	
Table 3. Annual value and quantity of commercial fisheries landings by area	
Table 4. Average annual landings of major species by area, 2008-2019.	5
Table 5a. Average annual landings in Sunrise WLA by gear type	
Table 5b. Average annual landings in Sunrise ECC by gear type	
Table 6. Average annual landings at major ports in Rhode Island and Massachusetts Table 7a. Average annual landings in Sunrise WLA by state	
Table 7b. Average annual landings in Sunrise ECC by state	
Table 8. Average monthly value of landings, 2020\$, 2014-2019 (2020\$)	
Table 9. Average monthly number of fishing trips, 2014-2019	12
Table 10. Price indexes.	
Table 11. Adjustment of landed value for landings not captured in VTR data and for RI dockside sales	
Table 12. Estimated annual economic impact in Rhode Island (all values in 2020\$)	
Table 13. For-hire charter fishing survey summary statistics	
Table 14. Number of Rhode Island-based vessel trips and anglers by year, Sunrise WLA	
Table 15. Number of Rhode Island-based vessel trips and anglers by year, Sunrise ECRA	
Table 16. Sunrise Wind area for-hire vessel revenue from NOAA VTR data. Source: NOAA (2021)	
Table 17. Annual revenue and economic impact from RI-based charter fishing in Sunrise Wind areas	
Table A1. Average annual landings by species from the Sunrise WLA, 2008-2019	
Table A2. Average annual landings by species from the Sunrise Wind ECRA, 2008-2019	
Table A3. Complete species list (including those in ALL_OTHERS)	
Table A4. Average annual landings from Sunrise WLA by port	
Table A5. Average annual landings from Sunrise ECRA (note: not ECC) by ports	
Table A5. Complete list of ports (including those in ALL_OTHERS)	36

List of Abbreviations

COP - Construction and Operations Plan

ECC – Export Cable Corridor

ECR – Export Cable Route

ECRA - Export Cable Route Area

GDP – Gross Domestic Product

MA DMF - Massachusetts Division of Marine Fisheries

NMFS - National Marine Fisheries Service

NOAA – National Oceanographic and Atmospheric Administration

PPI – Producer Price Index

RICRMC – Rhode Island Coastal Resources Management Council

RIDEM – Rhode Island Department of Environmental Management

VMS – Vessel Monitoring System

VTR – Vessel Trip Report

WLA – Wind Lease Area

WTGA - Wind Turbine Generator Area

Summary

Based on NOAA data from 2008 to 2019, and adjusting for underreporting of lobster and Jonah crab landings in the VTR data, and for some dockside sales of lobster and Jonah crab, we estimate the average annual value of commercial landings from the Sunrise Wind Lease Area to be \$2.34 million (2020\$), or \$5,429/km²/year. Of this, \$1.16 million is landed in Rhode Island. Including indirect and induced effects, these landings generate average annual economic impacts of \$2.49 million in Rhode Island.

We estimate the average annual value of commercial landings from the 180 m wide Sunrise Wind Export Cable Corridor to be \$149,000, or \$5,626/km²/year. Of this, \$23,000 is landed in Rhode Island. These landings generate estimated total annual economic impacts of \$50,000 in Rhode Island.

We estimate the average annual economic impact from Rhode Island-based for-hire charter fishing in the Sunrise Wind Lease Area to be between \$17,000 and \$27,000, between \$135,000 and \$218,000 from charter fishing around the Sunrise Wind Export Cable route, and between \$79,000 and \$128,000 from charter fishing in the vicinity of the Wind Lease Area that is to be developed. (Note that some of these areas overlap.)

There is considerable variability in the baseline data of landings and landed value from the Sunrise Wind lease area and export cable corridor. Baseline future landings will vary due to natural and fisheries-related fluctuations in stocks and prices.

Introduction

This report estimates the level of pre-development fishing operations intersecting with, and landings and landed value from, the Sunrise Wind Lease Area (WLA) and Export Cable Corridor (ECC) (Figure 1) associated with landings in Rhode Island ports. Sunrise Wind LLC is a joint venture between Ørsted and Eversource.

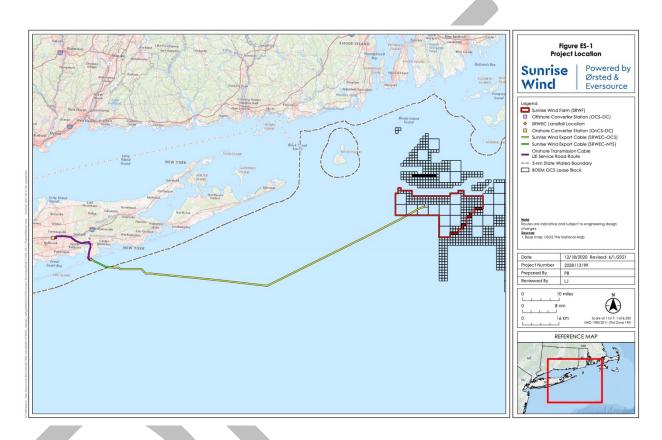


Figure 1. Sunrise Wind Lease Area and Export Cable Route. Source: Sunrise Wind.

The WLA for Sunrise Wind lies in federal waters, some 40 km south of the mainland coast near the border between Rhode Island and Massachusetts, and has a footprint of 430.6 km². The Export Cable Route (ECR) is 147 km in length, and runs from the edge of the WLA first toward the southwest and then west toward Fire Island off the coast of Long Island, New York, to the export cable landing location near the western end of Fire Island. (Note that the ECR is slightly longer than the ECC, because the cable route includes sections within the WLA and inland of the landing point.)

To estimate commercial fish landings along the ECC, we define a 10km wide Export Cable Route Area (ECRA) extending 5km on either side of the cable route. The 10km wide ECRA has no physical significance in the context of the Sunrise Wind Lease, and is defined only for the purpose of identifying

¹ A small piece in the northeast corner of the original Sunrise WLA is not under consideration for turbine tower placement, and is not included in the WLA shapefile used for this analysis.

fisheries landings data that reflect what may be landed from fishing along the ECC. The ECC is defined as the narrow, 180m wide corridor centered on the ECR within which the seafloor may be disturbed in the process of clearing the cable route and burying the cable.

Table 1 shows the approximate length and area of these features for the Sunrise export cable route. In the sections that follow, fishery landings and values for the export cable route are estimated and reported for the ECC, as defined above.

Table 1. Sunrise Wind area parameters

Wind Lease Area footprint (km2)	430.6
Export cable route length (km)	147
Area of 10km Export Cable Route Area (ECRA) (km²)	1,610.9
Area of Export Cable Corridor (ECC) (km²)	26.5
Export Cable Corridor fraction of ECRA	1.64%

Baseline commercial fishery landings and values, 2008-2019

Commercial Fisheries Data Description

The following data description is based on information provided by the National Marine Fisheries Service (NMFS) on March 20 and April 1, 2020.² NOAA has been collecting and improving the Vessel Trip Report (VTR) data for decades. The data have been widely used for fisheries research, management, and economic impact assessments. To gauge landings value and quantity at the spatial scale required for the Sunrise Wind Lease Area and export cable route, NOAA has recently developed a procedure to produce high-resolution spatial information using a combination of VTR and fishery observer data. As described below, we follow the general approach developed by NOAA, which is the best approach at present, with a recognition that relevant data are not perfect. All estimates of fishery landings and values in this report are based on these NMFS data; and the data have not been amended, adjusted, or augmented in any way, with two exceptions: we make adjustments to the lobster and Jonah crab landed values to account for possible underreporting; and we make adjustments to the Rhode Island lobster and Jonah crab landings to account for dockside sales. These adjustments are described in detail in the section on Adjustment of Lobster and Jonah Crab Data below. The adjusted data appear only in Tables 11 and 12 below.

The data presented below summarize estimates of fisheries landings and values for fishing trips that intersected with the Sunrise Wind Lease Area (WLA) or its Export Cable Route Area (ECRA), from 2008 to 2019 (calendar years). Modeled representations of federal Vessel Trip Report (VTR) and clam logbook fishing trip data were queried for spatial overlap with the WLA and the ECRA, and linked to dealer data for value and landings information. As detailed in DePiper (2014) and Benjamin *et al.* (2018), to improve

² Our primary contact at NMFS was Benjamin Galuardi, a statistician at the NOAA Greater Atlantic Regional Fisheries Office. He has worked extensively on fishery data analyses in general and the VTR data in particular, and has authored or coauthored more than 30 publications on fisheries sciences and spatial statistics.

the spatial resolution of VTR, a spatial distribution model was developed by combining vessel trip information from VTR with matching NOAA fishery observer data, including geocoordinates of detailed fishing locations. From this model, landings and value can be summarized for a specified geographic area according to (1) species, (2) gear type, (3) port of landing, and (4) state of landing.

In essence, the DePiper approach utilizes a spatial model to distribute the total landings for each commercial fishing trip over a circular area with its center located at the geocoordinate reported in the VTR, following a distribution decreasing with the radius. The model was estimated using VTR data (for the centroid) and vessel observer data (for haul beginning and endpoints). DePiper (2014) reported that the observer data matched VTR records well (488,251 hauls in the observer data were matched to 27,358 VTR records, representing 87.5% of all hauls with either a beginning or end point of a haul recorded).

The primary purpose of the observer data collection is to monitor fishery bycatch. NOAA's Standardized Bycatch Reporting Methodology (SBRM) dictates what types of vessels (gear, species, area of operation, etc.), participating in various fisheries, should be sampled and at what rate. The numbers of sea days needed to achieve a 30% coefficient of variation (CV = standard deviation divided by mean) of total discards for each species group were derived for different SBRM fleets covering different gears, access areas, states, and mesh sizes (NEFSC 2013). For Rhode Island vessels, the observer program covered around 8% of trips with trawl gear and around 3% of trips with gillnet gear (Jin 2015).

Following the DePiper approach, the resulting high spatial resolution data were converted into raster maps. Use of this VTR raster model produces a more accurate estimate of the spatial distribution of landings than other approaches that rely entirely on the self-reported VTR/clam logbook locations, which associate all landings from the trip with a single point location. At 10 nautical mile resolution, the confidence intervals of the DePiper model estimates are around 90% for trip lengths of one to two days.

The only alternative to the DePiper approach is a model to distribute the total landings from a VTR report over the vessel's track using the Vessel Monitoring System (VMS) data. The main challenge for this approach is accurate identification of fishing and non-fishing segments of a trip. Muench *et al.* (2018) have shown that using vessel speed alone can lead to a severe misrepresentation of fishing locations. NOAA has adopted the DePiper approach as a standard procedure to generate spatial data; and we agree with NOAA that this is the best approach currently available. The main advantages of the DePiper approach are that (1) it is based on observations of actual fishing locations noted by observers at sea, and (2) it provides a systematic and consistent way to meet the increasing demand for spatial fishing data for relatively small areas in the ocean, which is important for cross project comparison.

Landings associated with the Export Cable Corridor (ECC) are calculated by applying the factors in Table 1 to the landings estimated for the ECRA. This assumes that landings are distributed uniformly across the fished sections of the ECRA.

In order to maintain the legally required data confidentiality, summaries by species, gear type, and landing location are presented individually. In addition, for records that did not meet the "rule of three" (three or more unique dealers and three or more unique permits), values are summarized in a category labeled "ALL OTHERS." Note also:

- All landed values have been converted to 2020 dollars using the Producer Price Index for "unprocessed and prepared seafood."
- Pounds are reported in Landed Pounds, unless otherwise noted.
- Data summarized here are from federal sources only.
- Fishing vessels that carry only lobster permits for federal waters are not subject to VTR requirements. Landings from trips with no VTR are not reflected in this summary.
- Other fisheries exist in state waters that may not be reflected in data from federal sources (e.g. whelk, bluefish).

We also obtained the average monthly number of trips intersecting with each area, for the period of 2014-2019.

Commercial Fishery Landings from Wind Energy and Export Cable Route Areas

Table 2 shows the average annual level and standard deviation of total values and landings associated with fishing in the Sunrise WLA and the ECC from 2008 to 2019.

The average annual landings from the Sunrise WLA are about 2.19 million lbs (standard deviation 855,000 lbs) with a value of about \$2.12 million (standard deviation \$737,000). Average annual landings from the ECC are about 102,000 lbs (standard deviation 31,000 lbs) with a value of \$146,000 (standard deviation \$50,000).

Table 2. Average annual value and quantity of commercial fisheries landings by area

	Mean		Standard Deviation		
Area		Value/year	Landings/year	Value/year	Landings/year
		(2020 \$)	(lbs)	(2020 \$)	(lbs)
Sunrise WLA		2,116,815	2,191,599	736,846	855,072
Sunrise ECC		146,040	102,423	50,083	31,388

Table 3 shows the total landings and values, for each year from 2008 to 2019, associated with fishing in the Sunrise WLA and the ECC.

Table 4 summarizes the average annual landings and value of fisheries production from the Sunrise WLA and the ECC by the top five species or species groups. Lobster, scallops, monkfish, and skate wings are among the species/products generating the greatest value from the Sunrise WLA during the 2008-2019 time period.

Table 3. Annual value and quantity of commercial fisheries landings by area.

Area	Sunrise	Sunrise WLA		СС
Year	Value	Landings	Value	Landings
	(2020 \$)	(lbs)	(2020 \$)	(lbs)
2008	1,615,088	1,005,003	99,660	124,213
2009	1,774,968	1,763,708	116,648	141,792
2010	1,732,042	1,569,026	147,042	93,643
2011	2,068,388	2,138,106	183,873	121,945
2012	2,370,211	2,523,020	177,409	133,283
2013	3,660,640	3,846,497	193,497	110,854
2014	2,880,896	3,179,394	215,344	100,489
2015	2,100,812	2,099,179	112,582	123,345
2016	2,818,797	3,123,434	141,753	108,395
2017	2,011,618	2,091,922	206,015	64,818
2018	1,482,612	1,890,508	106,437	70,247
2019	885,704	1,069,387	52,223	36,059

Table 4. Average annual landings of major species by area, 2008-2019.

	1	Mean	Standara	l Deviation
Area/Species	Value/year (2020 \$)	Landings/year (lbs)	Value/year (2020 \$)	Landings/year (lbs)
Sunrise WLA				
ALL_OTHERS	559,908	712,732	526,411	603,320
Monkfish	377,837	224,763	134,917	39,911
Scallops/Bushel	243,724	21,375	180,466	16,581
Skate Wings	192,400	496,211	88,291	133,949
Lobster, American	131,173	23,676	34,047	6,421
Sunrise ECC				
Scallops/Bushel	62,591	5,704	45,989	4,658
ALL_OTHERS	17,814	21,860	17,907	21,597
Quahogs/Bushel	13,528	16,670	21,151	25,726
Monkfish	13,401	7,083	5,392	1,733
Squid/Loligo	11,494	8,877	4,379	3,925

Both mobile (e.g., trawl and dredge) and fixed (e.g., pots and gillnet) gears are used in fishing operations. The trawl gear is primarily used for harvesting groundfish, dredge for scallops, and pots for lobster and crabs. The fixed gears are fished using trawls (a series of lobster pots attached to one line) with string lengths of 0.4–0.8 km (up to 1.829 km) or gillnets with typical string lengths of 0.2–3.0 km.

Tables 5a and 5b break out annual landings for each area by gear type. Sinking gillnets and bottom trawls are the most significant in the WLA, followed by scallop dredges. In the ECC, bottom trawls and scallop dredges are the most significant, followed by sinking gillnets and clam dredges. The "ALL_OTHERS" category includes landings using purse seines, other seines, and weirs/traps, and others that fall under the "rule of three" exclusion.

Table 5a. Average annual landings in Sunrise WLA by gear type.

	Mean		Standard Deviation	
Gear	Value/year	Landings/year	Value/year	Landings/year
	(2020 \$)	(lbs)	(2020 \$)	(lbs)
ALL_OTHERS	608,138	720,798	514,302	601,202
Dredge - Clam	-	-	-	-
Dredge - Scallop	198,211	18,120	139,265	14,111
Gillnet – Other	-	-	-	-
Gillnet – Sink	550,603	563,390	210,752	193,006
Handline	3,387	917	4,821	1,122
Longline – Bottom	621	166	1,502	393
OTHER	7,764	691	26,896	2,394
Pot – Other	178,766	71,766	42,041	24,967
Trawl – Bottom	553,197	695,988	309,568	329,261
Trawl - Midwater	16,129	119,762	22,843	167,438

Table 5b. Average annual landings in Sunrise ECC by gear type.

	Mean		Standard Deviation	
Gear	Value/year	Landings/year	Value/year	Landings/year
	(2020 \$)	(lbs)	(2020 \$)	(lbs)
ALL_OTHERS	19,559	22,229	18,779	21,493
Dredge – Clam	13,897	16,872	20,984	25,656
Dredge – Scallop	57,149	5,238	41,824	4,275
Gillnet – Other	5	3	19	12
Gillnet – Sink	15,863	11,942	5,969	3,425
Handline	206	89	124	58
Longline - Bottom	45	12	102	27
OTHER	1,794	166	2,311	210
Pot - Other	3,581	2,040	1,053	541
Trawl – Bottom	31,799	28,050	7,171	5,388
Trawl - Midwater	2,143	15,782	1,998	14,316

Table 6 summarizes annual landings and landed value for the major ports receiving landings from the two areas. Point Judith (Rhode Island) and New Bedford (Massachusetts) are the most significant ports

for landings from the Sunrise Wind areas. Tables A5 through A7 in the Appendix show the complete data on average annual landings and landed value by port for Rhode Island and Massachusetts.

Tables 7a and 7b show average annual landings and landed value from the two areas by state where the catch is landed. Rhode Island and Massachusetts together account for more than 95% of landings and landed value from the WLA and more than 68% of landings from the ECC. The "others" category includes landings in Maine, Connecticut, New York, New Jersey, Maryland, North Carolina, and Virginia, as well as data flagged by the "rule of three" exclusion.

Table 6. Average annual landings at major ports in Rhode Island and Massachusetts.

	۸	Mean		d Deviation
Area/Port	Value/year (2020 \$)	Landings/year (lbs)	Value/year (2020 \$)	Landings/year (lbs)
Sunrise WLA				
New Bedford, MA	875,504	887,422	548,737	669,281
Point Judith, RI	546,080	525,298	262,657	338,703
Little Compton, RI	226,334	259,258	107,800	134,413
Newport, RI	138,952	181,915	68,718	91,330
Sunrise ECC				
New Bedford, MA	75,390	50,137	32,864	22,755
Point Judith, RI	15,923	12,784	6,679	2,777

Table 7a. Average annual landings in Sunrise WLA by state.

	Mean		Standar	d Deviation
State	Value/year	Landings/year	Value/year	Landings/year
	(2020 \$)	(lbs)	(2020 \$)	(lbs)
Rhode Island	1,034,863	1,124,470	267,459	277,149
Massachusetts	981,602	1,002,341	551,935	695,103
Others	99,838	64,361		

Table 7b. Average annual landings in Sunrise ECC by state.

	٨	Mean		d Deviation
State	Value/year	Landings/year	Value/year	Landings/year
	(2020 \$)	(lbs)	(2020 \$)	(lbs)
Rhode Island	22,218	19,853	8,703	3,996
Massachusetts	77,407	54,210	33,681	26,059
Others	46,394	28,347		

Landed value and trips by month

Table 8 and Figures 2 and 3 show the average monthly landings and values from the two areas. Table 9 reports the average monthly number of fishing trips that intersect each area.

Table 8. Average monthly value of landings, 2020\$, 2014-2019 (2020\$).

Month	Sunrise WLA	Sunrise ECC
Jan	181,533	15,225
Feb	108,563	15,810
Mar	111,095	19,200
Apr	161,159	25,643
May	165,798	23,047
Jun	237,018	42,712
Jul	170,048	41,095
Aug	144,073	23,846
Sep	224,291	20,819
Oct	163,778	17,847
Nov	191,969	15,994
Dec	190,477	20,273

Figure 2. Average monthly value of landings, Sunrise WLA, 2014-2019.

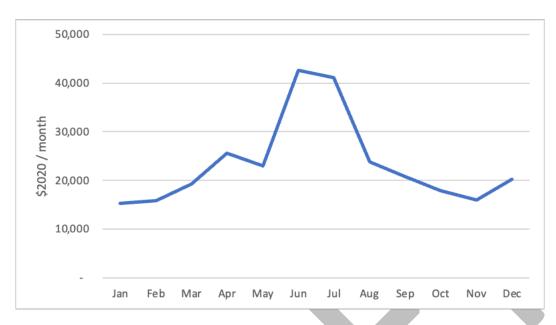


Figure 3. Average monthly value of landings, Sunrise ECC, 2014-2019.

Table 9. Average monthly number of fishing trips, 2014-2019.

Month	Sunrise WLA	Sunrise ECRA
Jan	315	480
Feb	167	323
Mar	149	305
Apr	208	452
May	367	732
Jun	502	923
Jul	575	789
Aug	579	705
Sep	501	677
Oct	380	589
Nov	335	588
Dec	365	646

Inter-annual price adjustments

We use the Bureau of Labor Statistics' Producer Price Index (PPI) for "unprocessed and prepared seafood" to convert ex-vessel value of fish landings, because this index is specifically for the fishery sector. PPI is a family of indexes that measures the average change over time in selling prices received

³ https://www.bls.gov/ppi/#data

by domestic producers of goods and services; they measure price change from the perspective of the seller. In contrast, the Bureau of Economic Analysis' general Gross Domestic Product (GDP) deflator⁴ measures changes in the prices of goods and services produced in the United States, including those exported to other countries, and captures price changes across all economic sectors. Table 10 shows both indexes from 2000 to 2021.

Note that the variation in the sector (i.e., fishery) specific price index is considerably larger than that of the GDP deflator. PPI decreases have been observed in several years since 2000. The GDP deflator exhibits a steady trend. We recognize that many seafood prices rose sharply in 2021, as reflected by the sharp increase in fish PPI for that year. We consider it unlikely that this will significantly alter the long-term trend, and maintain that the historical average is the best predictor of future values.

We report all values in 2020\$ for consistency. These values can be easily adjusted to any other-year dollars by applying the appropriate index adjustment. Landed value may be adjusted using the PPI index. For impact values, including upstream and downstream effects (see below), it is more appropriate to use the GDP deflator to adjust, because the multipliers capture economy-wide impacts.

Table 10. Price indexes.

Year	GDP implicit price deflator	Percent change	PPI fish	Percent change
2000	78.0		198.1	
2001	79.8	2.25%	190.8	-3.69%
2002	81.0	1.56%	191.2	0.21%
2003	82.6	1.97%	195.3	2.14%
2004	84.8	2.68%	206.3	5.63%
2005	87.5	3.14%	222.6	7.90%
2006	90.2	3.09%	237.4	6.65%
2007	92.6	2.70%	242.8	2.27%
2008	94.4	1.92%	255.4	5.19%
2009	95.0	0.64%	250.9	-1.76%
2010	96.2	1.20%	272.4	8.57%
2011	98.2	2.08%	287.6	5.58%
2012	100.0	1.87%	287.6	-0.02%
2013	101.8	1.75%	299.4	4.12%
2014	103.7	1.87%	322.4	7.68%
2015	104.7	1.00%	322.0	-0.13%
2016	105.7	1.00%	327.6	1.74%
2017	107.7	1.90%	337.9	3.15%
2018	110.3	2.39%	344.5	1.96%
2019	112.3	1.79%	349.9	1.55%
2020	113.6	1.21%	350.8	0.27%
2021	118.4	4.15%	413.0	17.74%
Annual average		2.01%		3.66%

⁴ https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=2&isuri=1&1921=survey

Adjustment of lobster and Jonah crab data

As noted above, lobster vessels that carry only lobster permits are not subject to a Vessel Trip Report (VTR) requirement. Trips without VTR are not reflected in the numbers shown in Tables 2 through 9 (cf. King 2019). To account for potentially unreported lobster and Jonah crab landings, and for dockside sales (see below), we make adjustments to the landed value data as shown in Table 11. Data in the first three rows are based on VTR data, and are taken from Table 2 and Tables A1 through A3 in the Appendix. An earlier study by Industrial Economics (2015) indicates that active lobster vessels not subject to trip report requirements in Lobster Management Area 2 may account for as much as 57% of the total lobster fishing activity in that area. (Lobster Management Area 2⁵ encompasses the waters south of Rhode Island and Cape Cod to a distance of about 40 nm, and includes the Sunrise WLA.) We assume conservatively that landings from 60% of the lobster vessels in the Sunrise WLA and ECRA could therefore be unreported, and that the VTR data represent 40% of the true lobster and Jonah crab revenues. We use this as an adjustment factor, and estimate the adjusted lobster and Jonah crab revenues at 2.5 times of those in the VTR data.

Some fraction of lobster and Jonah crab landings are sold directly from boats at dockside, at a price above that reported in the dealer information on which the NOAA values above are based. Neither the fraction of landings sold in this way nor the price premium is known exactly. Based on information provided by a group of Rhode Island fishermen (pers. comm., 24 Nov. 2020), we estimate that a 15% premium on the landed value derived from NOAA data (Table 11) adequately captures this dockside sales effect for Rhode Island landings. Dockside sales are not a common practice in Massachusetts (Mass. DMF pers. comm. May 2021), so we do not apply this multiplier to Massachusetts landings.

The combined adjustment for VTR data and dockside sales is shown in rows 5 and 6 in Table 11. The net increase is shown in row 7, and the adjusted total annual landed values are shown in row 8. This adjustment results in a 12.6% increase in the estimated total annual landed value.

Table 11. Adjustment of landed value for landings not captured in VTR data and for RI dockside sales.

Value (2020\$)	Sunrise WLA	Sunrise ECC
Avg. VTR total \$/year (Table 2)	2,116,815	146,040
Avg. VTR lobster \$/year (Tables A1-A3)	131,173	1,963
Avg. VTR Jonah crab \$/year (Tables A1-A3)	35,412	1,159
% of total captured by VTR	40%	40%
Adjusted lobster \$/year	351,981	5,019
Adjusted Jonah crab \$/year	95,022	2,964
Net increase over VTR \$/year (row 5+6-2-3)	280,419	4,861
Adjusted total \$/year	2,337,623	149,096
Adjusted increase over VTR total value	13.2%	3.3%

⁵ http://fisheries.noaa.gov/resource/map/lobster-management-areas

With all adjustments, we estimate the average annual landed value in Rhode Island from the Sunrise WLA to be about \$1.16 million (2020\$), and from the Sunrise ECC about \$23,000.

Estimated indirect and induced economic impacts

Economic impact multipliers reflect the linkages between economic activity in different sectors of the economy. For example, when landings increase in the commercial fishing sector, there is an associated increase in the purchases of ice and other supplies in the region, and an increase in onshore transportation and processing of seafood. The resulting increases in economic activity in the commercial fishing supply and transportation and processing sectors are indirect effects of increased landings. In addition, because fishermen and workers in the supply, transportation, and processing industries earn greater income as a result of this increased activity, and spend some of that extra income on local goods and services, there is also an induced effect of greater spending in other sectors. The multipliers capture the combined effect of indirect and induced spending that results from higher commercial landings.

We have developed regional economic models for Rhode Island using the IMPLAN model software (IMPLAN 2004) and data for 2018 and 2019. IMPLAN software and data are commercial products widely used by researchers and management agencies to perform economic impact analyses for a user specified study region (IMPLAN 2004; Steinback and Thunberg 2006; Hoagland *et al.* 2015; UMass Dartmouth. 2018; Cape Cod Commission 2020). Based on these models, and 2019 data, the upstream output multiplier for the commercial fishing industry in Rhode Island is 1.84.

We have also taken into account downstream economic activity, such as seafood processing, that may take place at Rhode Island businesses as a result of commercial fisheries landings. This linkage is less direct than the upstream activities, because not all seafood landed in a state is processed in the state, and seafood processors may import more seafood from elsewhere for processing when in-state landings fall short. Nonetheless, we add a downstream adjustment of 0.379, based on discussion with Rhode Island seafood industry representatives, to the multiplier for Rhode Island landings, bringing the combined multiplier to 2.219, to account for both upstream effects and downstream effects to seafood processors. We apply the combined upstream and downstream multiplier to all landings except lobster and Jonah crab, which are adjusted for dockside sales and receive only the upstream multiplier. The corresponding combined multiplier for Massachusetts landings is 2.205; for landings in other states, we use the average of the Massachusetts and Rhode Island multipliers.

While we use a single output multiplier for the entire commercial fishing sector in a given state, we recognize that the multiplier may vary across specific fisheries, species, and gear. We also recognize that other types of multipliers, such as those focusing on employment effects, have been used in other analyses. We maintain that the output multipliers we use provide a robust and accurate measure of indirect and inducted effects averaged across the fishing sectors.

Using these multipliers, and including the lobster and Jonah crab adjustment described in the previous section, we estimate the average annual total economic impact from commercial fishing activity in the Sunrise WLA to be about \$2.49 million in Rhode Island (Table 12). We also estimate the average annual total economic impact from commercial fishing activity in the Sunrise ECC to be about \$50,000 in Rhode Island. Including landings in other states, the total average annual economic impact from commercial

fishing activity in the WLA is \$5.04 million and in the ECC it is \$324,000. These estimates are based on average annual landings value from 2008 to 2019, with lobster and Jonah crab landed value adjusted to account for boats not subject to VTR requirements.

Table 12. Estimated annual economic impact in Rhode Island (all values in 2020\$)

		Average value of landings/year				
	State	VTR data only (Table 11, row 1)	with lobster & Jonah crab adjustment	with dockside sales adjustment (15% premium on RI lobster &	"dockside sales" column multiplied by upstream & downstream multipliers, except	
Area				JC landings)	RI lobster & JC	
Sunrise WLA	total	2,116,815	2,313,575	2,337,623	5,044,012	
Sunrise ECC	total	146,040	148,985	149,096	323,848	
Sunrise WLA	RI	1,034,911	1,131,107	1,155,156	2,493,412	
Sunrise ECC	RI	22,213	22,661	22,773	50,207	

Rhode Island-based charter fishing

To obtain data on for-hire charter fishing activity in the Sunrise Wind Lease Area (WLA) and Export Cable Corridor (ECC), we conducted an online survey of Rhode Island- and Massachusetts-based charter vessel operators. The survey asked operators to identify their fishing locations on a chart, and report for each location

- the total number of annual for-hire fishing trips that vessel took in each of the years 2017-2021,
- the average number of passengers onboard for-hire trips in each of the years 2017-2021, and
- the average amount of time spent targeting highly migratory species (HMS) relative to bottom fishing or trolling for other species during for-hire trips.

The survey was first distributed on April 18, 2022 through email lists maintained by Rhode Island Department of Environmental Management (RIDEM), Rhode Island Coastal Resources Management Council (RICRMC) and Massachusetts Division of Marine Fisheries (MADMF), and also via email by forhire fishing industry representatives, including the Rhode Island Party and Charter Boat Association. The survey was active from April 18, 2022 until May 14, 2022.

The survey received 91 total responses from for-hire charter owners and/or operators. Sixty-six of these respondents (72%) reported that they fish in the area from Block Island to Nantucket, depicted in Figure 4. These 66 respondents reported 62 unique vessels, and reported effort data for 29 of those vessels across the five-year period of 2017-2021 (Table 13). Similar studies published in the peer-reviewed academic literature using paper mail, email, or mixed mode survey distributions typically have survey response rates around 20-30% (e.g., Dalton *et al.* 2020, Carr-Harris and Steinback 2020). Based on

discussions with for-hire industry representatives, approximately 100 vessels actively engage in for-hire fishing activity in the waters depicted in Figure 4, suggesting the fishing reported by survey respondents accounts for about 29% of the total. Thus, the response rate for the primary population of interest is within an appropriate range to consider our survey distribution a success. An important note to also consider is that there are vessels in our sample that require the submission of federal VTRs. A common trend identified in the data was that some respondents did not provide data for their vessels that require VTRs. This is not a problem for this analysis as this effort data is already accounted for by the NOAA databases and summary reports used as a baseline for our subsequent analyses.

Table 13. For-hire charter fishing survey summary statistics.

Description	Number
Fished in the area and responded to the survey	66
Provided vessel names	62
of which based in Rhode Island	24.5
Provided annual vessel trip numbers	31
Observations with vessel trips reported (2017-2021)	142
Total trips per year	1 – 235
Average total trips per year	47.30
Passengers per vessel trip	2 – 25
Average passengers per vessel trip	5.41
Identified fishing locations on maps	29
of which based in Rhode Island	10.5

The number of anglers per year is estimated by multiplying the vessel trip number in a year and the average number of anglers per trip in that year for each vessel, and the results are then summed across vessels by area. Tables 14 and 15 show the annual vessel trips and angler counts in the survey responses for charter vessels based in Rhode Island. The Wind Turbine Generator Area (WTGA) is the area defined by the turbine tower locations and lies within, but does not include all of, the WLA shown in Figure 4. (The WTGA analysis is based on a WTGA shapefile received from INSPIRE Environmental in November 2020, and reflects the turbine tower layout planned for Sunrise Wind at that time. This layout may change.) Note that some of the trips shown for the ECRA (Table 15) are also included in the numbers for the WTGA + 5km buffer (Table 14).

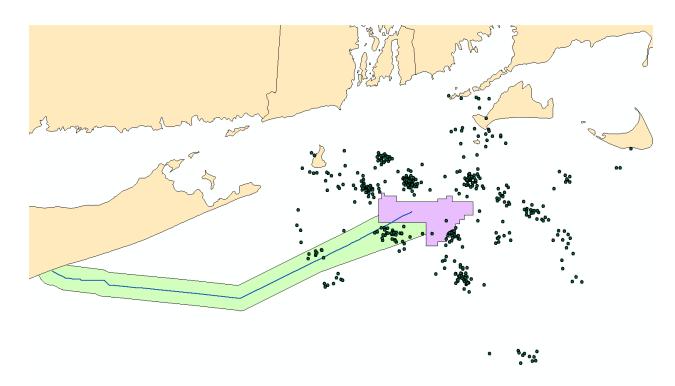


Figure 4. Charter fishing locations, 2017-2021, identified in survey responses. WLA is shown in purple, ECRA in green, and ECR in blue.

Table 14. Number of Rhode Island-based vessel trips and anglers by year, Sunrise WLA.

Year	WLA		WTGA + 5k	m buffer
	Vessel Trips	Anglers	Vessel Trips	Anglers
2017	20	120	45	270
2018	12	70	49.5	281
2019	0	0	21	120
2020	5	10	34	184
2021	1	6	25	131
Average	7.6	41.2	34.9	197.2

Table 15. Number of Rhode Island-based vessel trips and anglers by year, Sunrise ECRA.

Year	Vessel Trips	Anglers
2017	43	244
2018	49.5	295
2019	70	417
2020	58	344
2021	72	381
Average	58.5	336.2

We use the revenue per angler estimates from NOAA shown in the Table 16 below for our revenue calculation. We recognize that the per angler revenue from charter boats may be an order of magnitude larger than that from party boats. The NOAA data in Table 16 represent an average across both sectors, influenced by the fact that many more people participate in party boat fishing than in charter fishing. For consistency, we convert the average revenue per angler from 2019\$ (\$104.94) to 2020\$ (\$106.15) using the GDP implicit price deflator (2019: 112.3; 2020: 113.6).

Table 16. Sunrise Wind area for-hire vessel revenue from NOAA VTR data. Source: NOAA (2021).

Year	Revenue per angler (2019\$)
2008	87.52
2009	99.36
2010	111.48
2011	122.56
2012	116.79
2013	112.68
2014	109.76
2015	106.30
2016	101.74
2017	100.42
2018	85.71
Average	104.94

The annual revenue for each area is estimated by multiplying the number of anglers (Tables 14 and 15) by the average revenue per angler (\$106.15). The result is then adjusted using a scale factor. For a lowend estimate, the scale factor is the ratio of the number of Rhode Island vessels responding to the

survey (24.5) to the number of these vessels for which specific fishing locations were provided (10.5). For a high-end estimate, we increase the scale factor to reflect the estimated total of 100 vessels operating in the survey area (see above), versus the 62 for which survey responses were received. Finally, an economic impact multiplier is used to reflect the overall economic impacts associated with the charter fishing direct revenue. The multiplier is calculated using data in the NOAA report by Lovell et al. (2020). The results are shown in Table 17.

Table 17. Annual revenue and economic impact from RI-based charter fishing in Sunrise Wind areas.

Area	Annual anglers	Revenue per angler (2020\$)	Scale factor	Annual revenue (2020\$)	Impact multiplier	Annual impact (2020\$)
WLA	41.2	106.15	Low: 2.333	10,205	1.622	16,552
			High: 3.763	16,459	1.622	26,696
WTGA+5km	197.2	106.15	Low: 2.333	48,843	1.622	79,224
			High: 3.763	78,779	1.622	127,780
ECRA	336.2	106.15	Low: 2.333	83,271	1.622	135,066
			High: 3.763	134,308	1.622	217,848

References

Bartley, M.L., P. English, J.W. King, and A.A. Khan; HDR. 2019. Benthic monitoring during wind turbine installation and operation at the Block Island Wind Farm, Rhode Island – Year 2. Final report to the US Department of the Interior, Bureau of Ocean Energy Management, Office of Renewable Energy Programs. OCS Study BOEM 2019-019.

Benjamin, S., M.Y. Lee, and G. dePiper. 2018. Visualizing fishing data as rasters. NEFSC Ref Doc 18-12; 24 pp. https://www.nefsc.noaa.gov/publications/crd/crd1812/

Bergström, L., L. Kautsky, T. Malm, R. Rosenberg, M. Wahlberg, N. Åstrand Capetillo, and D. Wilhelmsson. 2014. Effects of offshore wind farms on marine wildlife – a generalized impact assessment. *Environmental Research Letters* 9(3).

California Department of Transportation. 2015. Technical guidance for assessment and mitigation of the hydroacoustic effects of pile driving on fish. Report #CTHWANP-RT-15-306.01.01.

Cape Cod Commission. 2020. Economic Impact of Cape Cod Harbors. October. https://capecodcommission.org/resource-

library/file?url=%2Fdept%2Fcommission%2Fteam%2FWebsite_Resources%2Feconomicdevelopment%2FHarborStudyReport_Final.pdf

Dalton, T., M. Weir, A. Calianos, N. D'Aversa, and J. Livermore. 2020. Recreational boaters' preferences for boating trips associated with offshore wind farms in US waters. *Marine Policy* 122:103216. https://doi.org/10.1016/j.marpol.2020.104216

Denes, S.L., D.G. Zeddies, and M.M. Weirathmueller. 2018. Turbine Foundation and Cable Installation at Sunrise Wind Farm: Underwater Acoustic Modeling of Construction Noise. Document 01584, Version 4.0. Technical report by JASCO Applied Sciences for Jacobs Engineering Group Inc.

DePiper, G.S. 2014. Statistically assessing the precision of self-reported VTR fishing locations. NOAA Technical Memorandum NMFS-NE-229. https://repository.library.noaa.gov/view/noaa/4806

Free, C.M., J.T. Thorson, M.L. Pinsky, K.L. Oken, J. Wiedenmann, and O.P. Jensen. 2019. Impacts of historical warming on marine fisheries production. *Science* 363:979-983.

Hoagland, P., T.M. Dalton, D. Jin and J.B. Dwyer. 2015. An approach for analyzing the spatial welfare and distributional effects of ocean wind power siting: the Rhode Island/Massachusetts Area of Mutual Interest. *Marine Policy* 58:51-59.

Hooper, T., M. Ashley, and M. Austen. 2015. Perceptions of fishers and developers on the co-location of offshore wind farms and decapod fisheries in the UK. *Marine Policy* 61:16–22. https://doi.org/10.1016/j.marpol.2015.06.031

Hooper, T., C. Hattam, and M. Austen. 2017. Recreational use of offshore wind farms: experiences and opinions of sea anglers in the UK. *Marine Policy* 78:55-60. https://doi.org/10.1016/j.marpol.2017.01.013

IMPLAN Group. 2004. IMPLAN Professional: Social Accounting and Impact Analysis Software. 3rd Edition. Huntersville, NC.

Industrial Economics. 2015. Atlantic Large Whale Take Reduction Plan: Introduction to NMFS' Co-Occurrence Model. Presentation at Annual Meeting of the Marine Mammal Commission. May 6. Industrial Economics, Inc., Cambridge, MA.

Jin, D. 2015. Statistical Analysis of Trip Cost Data Collected by The Northeast Observer Program. Project Report. December 4. Woods Hole Oceanographic Institution, Marine Policy Center, Woods Hole, MA.

King, D.M. 2019. Economic exposure of Rhode Island commercial fisheries to the Vineyard Wind Project. Report prepared for Vineyard Wind LLC by King and Associates, Inc. Plymouth, MA.

Kirkpatrick, A.J., S. Benjamin, G.S. DePiper, T. Murphy, S. Steinback, and C. Demarest. 2017a. Socio-economic impact of Outer Continental Shelf wind energy development on fisheries in the U.S. Atlantic. Volume I – Report Narrative. U.S Dept. of the Interior, Bureau of Ocean Energy Management, Atlantic OCS Region, Washington, D.C. OCS Study BOEM 2017-012. 150 pp.

Kirkpatrick, A.J., S. Benjamin, G.S. DePiper, T. Murphy, S. Steinback, and C. Demarest. 2017b. Socio-economic impact of Outer Continental Shelf wind energy development on fisheries in the U.S. Atlantic. Volume II – Appendices. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Atlantic OCS Region, Washington, D.C. OCS Study BOEM 2017-012. 191 pp.

Kneebone, J. and C. Capizzano. 2020. A comprehensive assessment of baseline recreational fishing effort for highly migratory species in southern New England and the associated Wind Energy Area. Final report to Vineyard Wind LLC, May 4, 2020.

Langhamer, O. 2012. Artificial reef effect in relation to offshore renewable energy conversion: state of the art. *The Scientific World Journal*, 2012. https://doi.org/10.1100/2012/386713

Leung, D.Y.C. and Y. Yang. 2012. Wind energy development and its environmental impact: a review. *Renewable and Sustainable Energy Reviews* 16(1):1031–1039. https://doi.org/10.1016/j.rser.2011.09.024

Lindeboom, H.J., H.J. Kouwenhoven, M.J.N. Bergman, S. Bouma, S. Brasseur, R. Daan, R.C. Fijn, D. deHaan, S. Sirksen, R. van Hal, R. Hille Ris Lambers, R. ter Horstede, K.L. Krijgsveld, M. Leopold, and M. Scheidat. 2011. Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; a compilation. Environmental Research Letters 6(3). https://doi.org/10.1088/1748-9326/6/3/035101

Lüdeke, J. 2017. Offshore wind energy: good practice in impact assessment, mitigation and compensation. *Journal of Environmental Assessment Policy and Management* 19(01):1750005. https://doi.org/10.1142/S1464333217500053

Maar, M., K. Bolding, J. Kjerulf, J.L.S. Hansen, and K. Timmermann. 2009. Local effects of blue mussels around turbine foundations in an ecosystem model of Nysted off-shore wind farm, Denmark. *Journal of Sea Research* 62(2–3):159–174.

Muench, A., G.S. DePiper and C. Demarest. 2018. On the precision of predicting fishing location using data from the vessel monitoring system (VMS). *Canadian Journal of Fisheries and Aquatic Sciences* 75(7):1036–1047. https://cdnsciencepub.com/doi/10.1139/cjfas-2016-0446

National Marine Fisheries Service (NMFS). 2020. Online landings database. https://foss.nmfs.noaa.gov/apexfoss/ Northeast Fisheries Science Center (NEFSC) and Northeast Regional Office. 2013. Proposed 2013 Observer Sea Day Allocation. Prepared for Northeast Regional Coordinating Committee. June 27. NOAA Fisheries, 166 Water Street, Woods Hole, MA.

Oremus, K.L. 2019. Climate variability reduces employment in New England fisheries. PNAS 116(52):26444-26449. https://doi.org/10.1073/pnas.1820154116

Popper, A.N., A.D. Hawkins, R.R. Fay, D.A. Mann, S. Bartol, T.J. Carlson, S. Coombs, W.T. Ellison, R.L. Gentry, et al. 2014. Sound Exposure Guidelines for Fishes and Sea Turtles: A Technical Report prepared by ANSI-Accredited Standards Committee S3/SC1 and registered with ANSI. ASA S3/SC1.4 TR-2014. Springer Briefs in Oceanography. ASA Press and Springer. https://doi.org/10.1007/978-3-319-06659-2.

Rhode Island Department of Environmental Management (RIDEM). 2019. Rhode Island fishing value in the Vineyard Wind Construction and Operations Plan area. Rhode Island Department of Environmental Management Division of Marine Fisheries.

Rhode Island Department of Environmental Management (RIDEM). 2018. Spatiotemporal and economic analysis of Vessel Monitoring System data within the New York Bight call areas. Rhode Island Department of Environmental Management Division of Marine Fisheries.

Rhode Island Department of Environmental Management (RIDEM). 2017. Spatiotemporal and economic analysis of Vessel Monitoring System data within wind energy areas in the greater North Atlantic, Addendum I. Rhode Island Department of Environmental Management Division of Marine Fisheries.

Steinback, S.R. 1999. Regional Economic Impact Assessments of Recreational Fisheries: An Application of the IMPLAN Modeling System to Marine Party and Charter Boat Fishing in Maine. *North American Journal of Fisheries Management* 19:3, 724-736.

Scott R. Steinback. S.R. and E.M. Thunberg. 2006. Northeast Region Commercial Fishing Input-Output Model. NOAA Technical Memorandum NMFS-NE-188. Northeast Fisheries Science Center, Woods Hole, Massachusetts.

ten Brink, T.S., T. Dalton, and J. Livermore. 2018. Perceptions of commercial and recreational fishers on the potential ecological impacts of the Block Island Wind Farm (US), the first offshore wind farm in North America. *Frontiers of Marine Science* 5:439, doi: 10.3389/fmars.29187.00439

Vallejo, G.C., K. Grellier, E.J. Nelson, R.M. McGregor, S.J. Canning, F.M. Caryl, and N. McLean. 2017. Responses of two marine top predators to an offshore wind farm. *Ecology and Evolution*, (February), 8698–8708. https://doi.org/10.1002/ece3.3389

Wilber, D.H., D.A. Carey, and M. Griffin. 2018. Flatfish habitat use near North America's first offshore wind farm. *Journal of Sea Research* 139(November 2017):24–32. https://doi.org/10.1016/j.seares.2018.06.004

Wilhelmsson, D., and T. Malm. 2008. Fouling assemblages on offshore wind power plants and adjacent substrata. *Estuarine, Coastal and Shelf Science* 79:459–466. https://doi.org/10.1016/j.ecss.2008.04.020

Wilhelmsson, D., T. Malm, and C.O. Marcus. 2006. The influence of offshore windpower on demersal fish. *ICES Journal of Marine Science* 63(63). https://doi.org/10.1016/j.icesjms.2006.02.001

Willsteed, E., A.B. Gill, S.N.R. Birchenough, S. Jude. 2017. Assessing the cumulative environmental effects of marine renewable energy developments: Establishing common ground. *Science of the Total Environment* 577(15 January 2017):19-32. https://doi.org/10.1016/j.scitotenv.2016.10.152

Appendix

Table A1. Average annual landings by species from the Sunrise WLA, 2008-2019.

Note: lobster and Jonah crab data in this table have not been adjusted for landings not reported via VTR.

	Λ	Леап	Standard Deviation		
Species	Value/year	Landings/year	Value/year	Landings/year	
	(2020 \$)	(lbs)	(2020 \$)	(lbs)	
ALL_OTHERS	559,908	712,732	526,411	603,320	
AMBERJACK, SPECIES NOT SPECIFIED	0	0	0	0	
BLACK BELLIED ROSEFISH	0	0	0	0	
BLACK SEA BASS	12,222	2,786	6,385	1,733	
BLUEFISH	3,407	4,536	1,962	2,436	
BONITO	291	90	476	133	
BUTTERFISH	17,038	22,772	18,509	25,517	
CLAM, SURF/BUSHEL	0	0	0	0	
COBIA	0	0	0	0	
COD	41,370	13,863	24,423	8,494	
CRAB, BLUE/BUSHEL	18	15	42	36	
CRAB, CANCER	0	0	0	0	
CRAB, HORSESHOE	0	0	0	0	
CRAB, JONAH	35,412	41,332	21,818	22,824	
CRAB, ROCK/BUSHEL	2,792	4,117	3,206	4,660	
CRAB, SPECIES NOT SPECIFIED	18	31	24	43	
CREVALLE	0	0	0	0	
CROAKER, ATLANTIC	86	189	174	425	
CUNNER	730	156	1,471	255	
CUSK	0	0	0	0	
DOGFISH, SMOOTH	641	1,661	806	2,987	
DOGFISH, SPINY	13,758	66,355	10,002	51,664	
DOLPHIN FISH / MAHI-MAHI	0	0	1	1	
DRUM, BLACK	0	0	0	0	
EEL, AMERICAN	9	10	11	13	
EEL, CONGER	215	305	304	405	
EEL, SPECIES NOT SPECIFIED	17	19	16	15	
FLOUNDER, AMERICAN PLAICE /DAB	306	130	747	320	
FLOUNDER, FOURSPOT	20	37	30	64	
FLOUNDER, SAND-DAB / WINDOWPANE	/ 290	374	541	691	
BRILL					
FLOUNDER, SOUTHERN	0	0	0	0	
FLOUNDER, SUMMER / FLUKE	97,628	27,773	64,534	20,822	
FLOUNDER, WINTER / BLACKBACK	55,691	19,842	61,694	21,164	
FLOUNDER, WITCH / GRAY SOLE	296	109	238	83	
FLOUNDER, YELLOWTAIL	57,000	28,950	60,324	36,530	
FLOUNDER, NOT SPECIFIED	0	0	0	0	
HADDOCK ROE	1,286	1,237	2,916	3,094	
HAKE, OFFSHORE	266	350	743	976	
, 3113112112	230	330	, .5	370	

HAKE BED / HAKE	7.000	22.250		22.244
HAKE, RED / LING	7,089	23,350	6,032	22,211
HAKE, SILVER / WHITING	64,298	106,558	51,011	96,799
HAKE, WHITE	790	532	1,679	1,205
HAKE,SPOTTED	0	0	1	1
HALIBUT, ATLANTIC	63	7	112	13
HARVEST FISH	0	0	0	0
HERRING, ATLANTIC	24,654	159,535	26,124	179,528
HERRING, BLUE BACK	0	0	0	0
JOHN DORY	97	74	107	78
LOBSTER, AMERICAN	131,173	23,676	34,047	6,421
MACKEREL, ATLANTIC	4,243	17,554	7,088	38,138
MACKEREL, CHUB	2	4	7	13
MACKEREL, KING	0	0	0	0
MACKEREL, SPANISH	2	1	6	2
MENHADEN	0	1	0	2
MONK	377,837	224,763	134,917	39,911
MULLETS	1	2	4	5
OCEAN POUT	26	20	73	59
OTHER FINFISH	0	1	0	1
PERCH, WHITE	0	0	0	0
POLLOCK	94	78	105	98
PUFFER, NORTHERN	0	0	0	0
QUAHOGS/BUSHEL	0	0	0	0
RED PORGY	0	0	0	0
REDFISH / OCEAN PERCH	3	2	8	6
SCALLOPS, BAY/SHELLS	1	0	4	0
SCALLOPS/BUSHEL	243,724	21,375	180,466	16,581
SCORPIONFISH	1	1	5	4
SCUP / PORGY	63,029	92,599	51,362	78,456
SEA RAVEN	153	104	272	197
SEA ROBINS	21	124	19	122
SEATROUT, SPECIES NOT SPECIFIED	13	24	18	37
SHAD, AMERICAN	0	0	1	1
SHAD, HICKORY	0	0	0	0
SHARK, SANDBAR	0	0	0	0
SHARK, THRESHER	4	4	13	14
SHEEPSHEAD	0	0	0	0
SKATE WINGS	192,400	496,211	88,291	133,949
SKATE WINGS SKATE WINGS, CLEARNOSE	192,400	13	16	133,949
SPOT	1	4	5	13
SQUID / ILLEX		-	_	5,293
SQUID / LOLIGO	2,347	2,454	6,605	
	92,798	70,056	92,364	71,383
STARGAZER, NORTHERN	0	0	0	0
STRIPED BASS	3,238	677	2,335	483
SWORDFISH	0	0	0	0
TAUTOG	795	212	606	159
TILEFISH	0	0	0	0
TILEFISH, BLUELINE	3	1	4	1

TILEFISH, GOLDEN	1,963	518	1,659	404
TILEFISH, SAND	0	0	0	0
TRIGGERFISH	28	16	34	18
TUNA, ALBACORE	48	64	158	209
TUNA, LITTLE	63	74	155	163
TUNA, SKIPJACK	0	0	0	0
WEAKFISH	405	189	424	189
WHELK, CHANNELED/BUSHEL	4,157	522	7,792	974
WHELK, KNOBBED/BUSHEL	8	3	18	10
WHELK, LIGHTNING	0	0	0	0
WHELK,WAVED	0	0	0	0
WHITING, KING / KINGFISH	420	372	666	584
WOLFFISH / OCEAN CATFISH	0	0	0	0

Table A2. Average annual landings by species from the Sunrise Wind ECRA, 2008-2019.

Note: lobster and Jonah crab data in this table have not been adjusted for landings not reported via VTR. (These data are for the 10km wide ECRA, not the 180 m wide ECC.)

Spacias		Mean	Standard Deviation		
Species \	/alue/year	Landings/year	Value/year	Landings/year	
	(2020 \$)	(lbs)	(2020 \$)	(lbs)	
ALL_OTHERS	1,086,214	1,332,928	1,091,900	1,316,866	
AMBERJACK, SPECIES NOT SPECIFIED	0	0	0	0	
BLACK BELLIED ROSEFISH	0	0	1	1	
BLACK SEA BASS	53,033	12,521	19,313	5,061	
BLUEFISH	18,957	23,346	8,936	11,229	
BONITO	1,050	412	1,533	595	
BUTTERFISH	16,597	21,037	6,373	8,275	
CLAM, SURF/BUSHEL	7,967	10,441	16,727	22,297	
COBIA	26	8	43	12	
COD	41,005	15,173	26,421	9,161	
CRAB, BLUE/BUSHEL	147	117	340	270	
CRAB, CANCER	0	0	0	0	
CRAB, HORSESHOE	247	216	338	315	
CRAB, JONAH	70,684	86,389	26,048	26,734	
CRAB, ROCK/BUSHEL	4,138	6,237	4,594	6,911	
CRAB, SPECIES NOT SPECIFIED	227	426	485	929	
CREVALLE	1	1	2	2	
CROAKER, ATLANTIC	457	653	1,003	1,212	
CUNNER	551	162	615	152	
CUSK	2	2	6	7	
DOGFISH, SMOOTH	8,424	12,688	2,083	4,090	
DOGFISH, SPINY	9,165	38,144	7,462	23,274	
DOLPHIN FISH / MAHI-MAHI	3	1	7	2	
DRUM, BLACK	0	0	1	1	
EEL, AMERICAN	4,314	220	13,905	275	
EEL, CONGER	1,384	1,409	1,333	1,355	
EEL, SPECIES NOT SPECIFIED	1,271	1,124	1,436	1,092	
FLOUNDER, AMERICAN PLAICE / DAB	234	106	372	164	
FLOUNDER, FOURSPOT	271	522	198	432	
FLOUNDER, SAND-DAB / WINDOWPANE /	1,685	1,943	2,831	3,254	
BRILL					
FLOUNDER, SOUTHERN	9	3	32	9	
FLOUNDER, SUMMER / FLUKE	447,054	130,148	115,523	47,087	
FLOUNDER, WINTER / BLACKBACK	35,113	12,948	35,858	12,299	
FLOUNDER, WITCH / GRAY SOLE	2,015	634	2,164	637	
FLOUNDER, YELLOWTAIL	90,579	45,204	87,064	47,122	
FLOUNDER,NOT SPECIFIED	8	4	25	11	
HADDOCK ROE	1,635	1,668	5,262	5,517	
HAKE, OFFSHORE	646	785	838	925	

HAKE, RED / LING	9,314	18,667	3,458	7,883
HAKE, SILVER / WHITING	60,678	74,726	29,213	33,972
HAKE, WHITE	748	491	1,096	748
HAKE,SPOTTED	16	27	42	66
HALIBUT, ATLANTIC	86	11	107	15
HARVEST FISH	0	1	1	1
HERRING, ATLANTIC	148,770	1,050,510	115,439	863,625
HERRING, BLUE BACK	73	283	109	502
JOHN DORY	466	382	499	418
LOBSTER, AMERICAN	119,695	21,316	55,229	9,922
MACKEREL, ATLANTIC	31,534	135,262	49,179	243,327
MACKEREL, CHUB	299	419	1,009	1,391
MACKEREL, KING	1	0	3	1,331
MACKEREL, SPANISH	125	51	124	50
MENHADEN	870	7,225	1,154	9,986
MONK	817,138	431,906	328,751	105,659
MULLETS	33	38	51	64
OCEAN POUT	198	157	483	362
OTHER FINFISH	75	54	219	126
PERCH, WHITE	73	1	1	120
POLLOCK	245	245	609	687
PUFFER, NORTHERN	0	0	009	087
•				_
QUAHOGS/BUSHEL RED PORGY	824,865	1,016,461 13	1,289,689 25	1,568,629 44
REDFISH / OCEAN PERCH	7	4	6	8
SCALLOPS, BAY/SHELLS	38	3	132	11
SCALLOPS/BUSHEL	3,816,495			
SCORPIONFISH	5,010,495	347,782 14	2,804,183 15	283,996 34
SCUP / PORGY				
SEA RAVEN	170,198 102	213,291 76	47,097 178	80,257 138
SEA ROBINS	172	754	74	309
	58	734	82	56
SEATROUT, SPECIES NOT SPECIFIED	39	58	46	82
SHAD, AMERICAN SHAD, HICKORY				27
SHARK, SANDBAR	7	8	23 2	1
SHARK, THRESHER	98	65	162	95
SHEEPSHEAD	0	1	102	1
SKATE WINGS	221,893		_	_
SKATE WINGS SKATE WINGS, CLEARNOSE	51	603,399 150	86,517 136	150,471 417
	125	161		
SPOT SQUID / ILLEX	883	1,144	257 1,150	383 1,186
SQUID / LOLIGO	700,858			
STARGAZER, NORTHERN	700,838	541,276 0	267,036 0	239,357
				4 240
STRIPED BASS SWORDFISH	49,469 12	11,721 3	18,535 21	4,349
TAUTOG		_		4
	2,231	602	1,680	454
TILEFISH THEEISH BILLELINE	0	0	1 26	0
TILEFISH, BLUELINE	24	12	26	14

TILEFISH, GOLDEN	7,544	1,997	6,374	1,770
TILEFISH, SAND	2	1	6	2
TRIGGERFISH	265	148	148	106
TUNA, ALBACORE	207	185	322	270
TUNA, LITTLE	388	520	364	575
TUNA, SKIPJACK	3	2	11	6
WEAKFISH	3,195	1,505	2,444	1,286
WHELK, CHANNELED/BUSHEL	2,079	430	2,291	376
WHELK, KNOBBED/BUSHEL	149	100	259	199
WHELK, LIGHTNING	55	21	152	55
WHELK,WAVED	503	707	1,210	1,670
WHITING, KING / KINGFISH	1,890	1,609	3,865	3,086
WOLFFISH / OCEAN CATFISH	0	0	0	0

Table A3. Complete species list (including those in ALL_OTHERS).

Species	Species
ALEWIFE	OCTOPUS, SPECIES NOT SPECIFIED
AMBERJACK, SPECIES NOT SPECIFIED	OTHER FINFISH
AMBERJACK,GREATER	PERCH, SAND
ANCHOVY,BAY	PERCH, WHITE
ARGENTINES, SPECIES NOT SPECIFIED	POLLOCK
ATLANTIC SALMON	POMPANO, COMMON
BLACK BELLIED ROSEFISH	PORGY,JOLTHEAD
BLACK SEA BASS	PUFFER, NORTHERN
BLUE RUNNER	QUAHOGS/BUSHEL
BLUEFISH	RED PORGY
BONITO	REDFISH / OCEAN PERCH
BULLHEADS	RIBBONFISH
BUTTERFISH	ROUGH SCAD
CLAM, ARCTIC SURF	SCALLOPS,BAY/SHELLS
CLAM, RAZOR	SCALLOPS/BUSHEL
CLAM, SPECIES NOT SPECIFIED	SCORPIONFISH
CLAM, SURF/BUSHEL	SCUP / PORGY
COBIA	SEA RAVEN
COD,MILT	SEA ROBINS
CRAB, BLUE/BUSHEL	SEA URCHINS
CRAB, CANCER	SEATROUT, SPECIES NOT SPECIFIED
CRAB, GREEN/BUSHEL	SHAD, AMERICAN
CRAB, HERMIT	SHAD, GIZZARD
CRAB, HORSESHOE	SHAD, HICKORY
	SHARK, ANGEL
CRAB, JONAH	
CRAB, LADY	SHARK, BLACKTIP
CRAB, RED/BUSHEL	SHARK, BLUE
CRAB, ROCK/BUSHEL	SHARK, MAKO, LONGFIN
CRAB, SPECIES NOT SPECIFIED	SHARK, MAKO, SHORTFIN
CRAB, SPIDER	SHARK, MAKO, SPECIES NOT SPECIFIED
CREVALLE	SHARK, NOT SPECIFIED
CROAKER, ATLANTIC	SHARK, NURSE
CRUSTACEANS, SPECIES NOT SPECIFIED	SHARK, PORBEAGLE
CUNNER	SHARK, SANDBAR
CUSK	SHARK, THRESHER
CUTLASSFISH, ATLANTIC	SHARK, THRESHER, BIGEYE
DOGFISH, CHAIN	SHARK, TIGER
DOGFISH, SMOOTH	SHARK, WHITE
DOGFISH, SPECIES NOT SPECIFIED	SHARK, WHITETIP
DOGFISH, SPINY	SHEEPSHEAD
OOLPHIN FISH / MAHI-MAHI	SHRIMP (MANTIS)
DRUM, BLACK	SHRIMP (PANAEID)
DRUM, SPECIES NOT SPECIFIED	SHRIMP (PANDALID)
EEL, AMERICAN	SHRIMP, SPECIES NOT SPECIFIED
EEL, CONGER	SILVERSIDES, ATLANTIC
EEL, SPECIES NOT SPECIFIED	SKATE WINGS
FLOUNDER, AMERICAN PLAICE /DAB	SKATE WINGS, CLEARNOSE
FLOUNDER, FOURSPOT	SNAIL,MOON
FLOUNDER, SAND-DAB / WINDOWPANE / BRILL	SNAPPER, OTHER
FLOUNDER, SOUTHERN	SNAPPER, RED

DRAFT

FLOUNDER, SUMMER / FLUKE FLOUNDER, WINTER / BLACKBACK FLOUNDER, WITCH / GRAY SOLE

FLOUNDER, YELLOWTAIL

FLOUNDER, NOT SPECIFIED GROUPER, OTHER

GROUPER, SNOWY HADDOCK ROE

HAKE, OFFSHORE

HAKE, RED / LING

HAKE, SILVER / WHITING

HAKE, WHITE
HAKE,SPOTTED
HALIBUT, ATLANTIC
HARD QUAHOG
HARVEST FISH
HERRING, ATLANTIC

HERRING, BLUE BACK

HERRING,ATLANTIC THREAD HERRING/SARDINES,SPECIES NOT SPECIFIED

JACK,ALMACO JOHN DORY LADYFISH

LOBSTER, AMERICAN

LUMPFISH

MACKEREL, ATLANTIC MACKEREL, CHUB MACKEREL, FRIGATE

MACKEREL, KING MACKEREL, SPANISH MARLIN, BLUE MENHADEN

MOLLUSKS, SPECIES NOT SPECIFIED

MONK LIVERS MULLETS

NEEDLEFISH, ATLANTIC

OCEAN POUT

OCEAN SUNFISH / MOOLA

SPADEFISH SPOT

SQUID / ILLEX SQUID / LOLIGO

SQUID, SPECIES NOT SPECIFIED

SQUIRRELFISH STARFISH

STARGAZER, NORTHERN

STING RAYS, SPECIES NOT SPECIFIED

STRIPED BASS

STURGEON, ATLANTIC

SWORDFISH TAUTOG TILEFISH

TILEFISH, BLUELINE
TILEFISH, GOLDEN
TILEFISH, SAND
TOADFISH, OYSTER
TRIGGERFISH
TRIGGERFISH,GRAY
TUNA, ALBACORE
TUNA, BIG EYE
TUNA, BLUEFIN

TUNA, SPECIES NOT SPECIFIED

TUNA, YELLOWFIN TURTLE, LEATHERBACK

WAHOO

TUNA, LITTLE TUNA, SKIPJACK

WEAKFISH / SQUETEAGUE / GRAY SEA TROUT WEAKFISH, SPOTTED / SPOTTED SEA TROUT

WHELK, CHANNELED/BUSHEL WHELK, KNOBBED/BUSHEL WHELK, LIGHTNING

WHELK, WAVED

WHITING, KING / KINGFISH WOLFFISH / OCEAN CATFISH

Table A4. Average annual landings from Sunrise WLA by port.

	Me	ean	Standard	Deviation
Port	Value/year	Landings/year	Value/year	Landings/year
	(2020 \$)	(lbs)	(2020 \$)	(lbs)
ALL_OTHERS	53,195	71,187	114,525	143,689
ATLANTIC CITY	0	0	0	0
BARNEGAT	0	0	0	0
BARNSTABLE	43	16	148	54
BEAUFORT	2,605	1,008	2,843	1,129
BELFORD	48	20	166	71
BOSTON	1,512	2,692	2,434	5,682
BRISTOL	0	0	0	0
CAPE MAY	903	419	1,692	1,081
CHATHAM	5,033	4,278	11,127	9,439
CHILMARK	4,785	973	7,195	1,565
CHINCOTEAGUE	57	20	198	68
DAVISVILLE	1,318	1,746	3,174	5,535
FAIRHAVEN	16,201	10,368	26,977	17,169
FALL RIVER	2,931	10,891	4,303	17,377
FALMOUTH	0	0	0	0
FREEPORT	0	0	0	0
GLOUCESTER	3,693	27,040	12,275	90,800
HAMPTON	6,389	3,140	11,196	6,034
HAMPTON BAY	28	21	67	53
HARWICHPORT	1,111	207	3,051	567
HYANNIS	0	0	0	0
ISLIP	0	0	0	0
JAMESTOWN	0	0	0	0
LITTLE COMPTON	226,334	259,258	107,800	134,413
LONG BEACH	0	0	0	0
MENEMSHA	5,425	957	10,326	1,659
MONTAUK	41,198	24,325	17,716	11,684
MOREHEAD CITY	0	0	0	0
MORICHES	0	0	0	0
NANTUCKET	0	0	0	0
NEW BEDFORD	875,504	887,422	548,737	669,281
NEW LONDON	7,504	8,638	7,769	9,456
NEW SHOREHAM	718	406	760	813
NEWPORT	138,952	181,915	68,718	91,330
NEWPORT NEWS	3,176	1,528	7,079	3,798
NORTH KINGSTOWN	0	0	0	. 0
OCEAN CITY	0	0	0	0
ORIENTAL	0	0	0	0
OTHER NASSAU	0	0	0	0
OTHER	0	0	0	0
WASHINGTON(COUNTY)				
POINT JUDITH ,	546,080	525,298	262,657	338,703

POINT LOOKOUT	0	0	0	0
POINT PLEASANT	3,422	1,664	4,334	2,086
SANDWICH	198	191	686	660
SHINNECOCK	262	254	790	780
STONINGTON	20,969	9,586	27,023	7,596
TIVERTON	38,976	48,182	54,191	63,536
VINEYARD HAVEN	0	0	0	0
WANCHESE	1,321	501	3,633	1,376
WESTPORT	48,050	35,531	25,949	31,021
WILDWOOD	0	0	0	0
WOODS HOLE	5,680	731	13,266	1,708

Table A5. Average annual landings from Sunrise ECRA (note: not ECC) by ports.

	Λ.Λ.	ean	Standard	Deviation
Port	Value/year	Landings/year	Value/year	Landings/year
1010	(2020 \$)	(lbs)	(2020 \$)	(lbs)
ALL_OTHERS	143,117	176,898	191,660	245,183
ATLANTIC CITY	77,527	70,495	121,388	109,654
BARNEGAT	8,747	1,120	17,512	1,775
BARNSTABLE	0	0	0	0
BEAUFORT	17,715	6,051	21,168	6,382
BELFORD	7,339	3,311	16,143	7,042
BOSTON	855	971	1,400	1,483
BRISTOL	0	0	0	0
CAPE MAY	148,766	105,942	131,194	162,371
CHATHAM	382	231	897	619
CHILMARK	452	119	1,175	309
CHINCOTEAGUE	3,435	1,466	4,610	1,872
DAVISVILLE	13,160	5,945	33,605	16,782
FAIRHAVEN	59,094	7,831	86,941	11,476
FALL RIVER	8,662	41,781	13,879	75,814
FALMOUTH	0	0	0	0
FREEPORT	1,647	547	2,141	764
GLOUCESTER	17,206	103,963	36,986	216,104
HAMPTON	27,393	11,062	27,288	11,932
HAMPTON BAY	408,225	225,944	226,863	123,057
HARWICHPORT	243	26	841	90
HYANNIS	103	14	358	48
ISLIP	50	20	173	68
JAMESTOWN	0	0	0	0
LITTLE COMPTON	60,734	60,342	54,955	45,630
LONG BEACH	283	56	980	193
MENEMSHA	137	22	474	77
MONTAUK	619,147	338,770	191,638	82,674
MOREHEAD CITY	115	46	400	159
MORICHES	31,172	15,133	58,495	29,523
NANTUCKET	0	0	0	0

NEW BEDFORD	4,596,922	3,057,161	2,003,902	1,387,470
NEW LONDON	273,333	166,851	170,528	85,708
NEW SHOREHAM	5,998	4,614	12,427	10,998
NEWPORT	177,602	160,773	219,187	55,484
NEWPORT NEWS	40,413	7,714	42,981	7,040
NORTH KINGSTOWN	6,012	17,829	14,411	44,701
OCEAN CITY	1,644	428	3,216	808
ORIENTAL	339	142	813	334
OTHER NASSAU	123	120	425	414
OTHER	746	486	2,584	1,685
WASHINGTON(COUNTY)				
POINT JUDITH	970,922	779,532	407,242	169,347
POINT LOOKOUT	4,591	2,701	7,604	4,907
POINT PLEASANT	142,124	92,041	61,216	62,891
SANDWICH	0	0	0	0
SHINNECOCK	678,485	487,859	244,769	181,403
STONINGTON	165,057	66,856	90,279	34,459
TIVERTON	18,375	30,325	23,482	32,619
VINEYARD HAVEN	0	0	0	0
WANCHESE	2,741	1,040	4,033	1,463
WESTPORT	19,252	13,665	10,888	8,472
WILDWOOD	1,283	182	4,443	632
WOODS HOLE	106	16	366	54
·				·

Table A5. Complete list of ports (including those in ALL_OTHERS).

AMAGANSETT	NEW YORK CITY
ATLANTIC CITY	NEWINGTON
BARNEGAT	NEWPORT
BARNSTABLE	NEWPORT NEWS
BASS RIVER	NIANTIC
BEAUFORT	NOANK
BELFORD	NORTH KINGSTOWN
BOSTON	OCEAN CITY
BRISTOL	OLD SAYBROOK
BROAD CHANNEL	ORIENT
BROOKLYN	ORIENTAL
CAPE MAY	OTHER BEAUFORT(COUNTY)
CHATHAM	OTHER BRONX
CHESAPEAKE BEACH	OTHER CAPE MAY
CHILMARK	OTHER CITY OF HAMPTON
CHINCOTEAGUE	OTHER CURRITUCK
CITY OF SEAFORD	OTHER DUKES
DANVERS	OTHER MAINE
DARTMOUTH	OTHER NEWPORT
DAVISVILLE	OTHER NORTHAMPTON

DUXBURY OTHER NY
EAST HAMPTON OTHER SUFFOLK

ENGELHARD OTHER VIRGINIA FAIRHAVEN OTHER WASHINGTON

FALL RIVER OTHER WASHINGTON(COUNTY)

FALMOUTH OYSTER

FREEPORT POINT JUDITH
GLOUCESTER POINT LOOKOUT
GREENPORT POINT PLEASANT

GROTON PORTLAND
GUILFORD PROVIDENCE
HAMPTON PROVINCETOWN
HAMPTON BAY PT. PLEASANT
HARWICHPORT ROCKLAND
HIGHLANDS ROCKPORT
HOBUCKEN SACO

HYANNIS SANDWICH
ISLIP SHELTER ISLAND
JAMESTOWN SHINNECOCK
LITTLE COMPTON SMITHTOWN

LONG BEACH SOUTH KINGSTOWN

MANASQUANSOUTHOLDMARBLEHEADSTONINGTONMARSHFIELDSWAN QUARTERMASTICTIVERTON

MATTITUCK VINALHAVEN **MENEMSHA** VINEYARD HAVEN MONMOUTH VIRGINIA BEACH WAKEFIELD **MONTAUK** WANCHESE **MONTVILLE MOREHEAD CITY** WARREN **MORICHES** WATERFORD MYSTIC WESTERLEY NANTUCKET WESTPORT

NEW BEDFORD WILDWOOD
NEW LONDON WOODS HOLE

NEW SHOREHAM