Moving Forward on Wind Energy in RI: An Engineering Perspective **Malcolm Spaulding Professor, Ocean Engineering Director, Center of Excellence in Undersea Technology University of Rhode Island** Narragansett, RI

EBC Rhode Island Chapter Seminar: Wind Energy in Rhode Island: An Update November 30, 2007

Outline

• Site Selection Process • Wind Resource Characterization • Environmental Forcing Wind Waves Storm surge • Steps to move forward

Key Engineering Evaluation Criteria

- Winds (power resource)
- Environmental Forcing (extremes, once in 100 yr; structure design (foundation))
 - Winds
 - Waves
 - Storm Surge
- Bathymetry and stratigraphy (depth to bedrock)

Fixed Bottom Substructure Technology

Proven Designs

Future

WINDS

RI Winds Study (ATM, 2006)

- Employed AWS TrueWinds Analysis to Characterize Wind Resource
- AWS True Winds:

* MesoMap System - Based on meteorological model predictions and mass flow analyses, incorporate historical data
* 200m grid resolution

* Performed for RI, CT and MA by

Brower (2007)

AWS TrueWinds Methodology

- 366 independent days of simulation, selected from 15 yr long historical record.
- Validated against 33 wind monitoring stations (most on land, only 2 in RI and none in RI waters)(65 m elevation).
- RMS error 4%
- Output maps of mean annual wind speed (m/sec) at 30, 50, 70 and 100 m and mean annual power (kW/m²) at 50 m. (no time series, frequency analysis or direction information available

Validation
Sites for
AWS True
Wind
Predictions

Table 1. Comparison of Predicted and Measured/Extrapolated Mean Speeds at 65 m Height Speed Shear Speed at Мар Bias Station Exponent 65m (m/s) (m/s) State (m/s) (m/s) (m) Bridgeport CT 5.0 0.17 -0.4 10 6.9 6.5 Hartford, Brainard Field CT 13.4 3.7 0.20 5.1 5.20.1CT 15.25.6 0.12 6.7 0.4New London Ledge 7.1CT 7.2 0.8 Point Judith 18.9 6.2 0.12 8.0 Windsor Locks, Bradley Field CT 3.8 5.7 5.2-0.5 6.1 0.17 MA 3.1 5.0 5.6 0.6 Bedford, Hanscom AFB 4 0.17 Bishop and Clerks MA 15 7.0 0.12 8.3 84 0.1 MA 0.78 6.7 0.4Borden Mtn 404.67.1 7.4-0.9 Boston MA 10 5.9 0.12 6.5 MA 5 6.3 0.1 8.2 7.9 -0.3 Boston Harbor Buoy 44013 7.9 7.2-0.7 Boston/Hull MA 18.9 6.8 0.12 Brodie Mtn MA 40 6.9 0.63 9.4 8.7 -0.7 Burnt Hill 4.9 0.9 MA 40 0.3 5.6 6.5 Buzzards Bay CG Light Tower MA 25 7.8 0.12 8.8 8.6 -0.2 MA 4.3 0.0 East Falmouth, Otis ANGB 4 0.17 6.9 6.9 7.5 0.0 MA 25 6.7 0.12 7.5 Gloucester -0.2 Halibut Point MA 30 5.9 0.3 7.4 7.3 Isle of Shoals MA 17 6.8 0.12 8.0 7.8 -0.2 MA 45 0.28 7.6 -0.7 Mt Tom 6.9 6.9 Mt Wachusett MA 24 6.2 0.21 7.6 7.3 -0.3 8.2 0.27 9.0 -1.0 MA 46 8.0 Nantucket 6.7 Outer Bank Buoy 44008 MA 5 0.12 9.1 9.2 0.1 MA 27 51 0.19 6.0 6.5 0.5 Salisbury 5.9 7.2 0.3 Scituate MA 18.9 0.12 6.8 Thompson Island MA 40 5.6 0.13 5.9 6.3 0.4 6.5 0.1 Wind Mill Point MA 24 5.8 0.12 6.7 -0.5 Worcester MA 6.7 4.5 0.20 7.1 6.6 Yarmouth Radio Tower MA 7.4 7.1 -0.3 30 6.0 0.27 5.5 -0.1 Manchester NH 3 3.1 0.20 5.6 Portsmouth, Pease AFB NH 10 4.10.17 5.75.9 0.2 NY 7.79.3 -0.5 26 0.21 8.8 Taconic 7.4-0.1 Block Island DOE RI 46 0.24 8.1 8.0 RI 4.7 6.1 0.12 6.2 5.9 -0.3 Providence 6.9 -0.1 6.8 Average

(Brower, 2007)

Validation

Three sites in RI,
Providence
Pt Judith
Block Island (DOE)
None in RI coastal waters

*** Re-verified by ATM at Buzzards Bay Light

50 m power density

Wind Resource of Connecticut Mean Annual Power Density at 50 Meters

Composite: NY, RI, CT and MA

True Winds, 50m annual power density

Some Concerns with AWS TrueWind Data

Lack of validation for offshore areas*

(Adjusted winds, upward by 5% in Boston Harbor and nearby coastal areas to agree with observations, no similar adjustment for RI waters, since no data)

- Analysis may not accurately represent sea breeze (important near land)
- Maps are inconsistent between adjacent regions (states)
- * WINDS MAYBE BIASED LOW BASED ON BOSTON HARBOR EXAMPLE

ATM et al Site Screening Criteria

- Minimum wind speed: 7 m/sec at 80 m
 Water depth (8 to 75 ft or 2.4 to 23 m)
 Suitable use (navigation/marine transportation, airport, cables, marine sanctuaries, eel grass beds)
- Minimum area for development

ATM (Sep 2007)

Figure 1 - RIWINDS Report Figure 3.20: Map Showing Post Level 2 Screening Areas Separated by Wind Speed and Final Area Designation

ATM (2007)

Figure 3 - RIWINDS Report Figure 6.2: Estimated Levelized Cost of Energy Compared to Levelized Wholesale Electricity Price Forecasts

ATM (2007) Final Ranking

Based on cost/potential, jurisdiction, and visibility from shore
 Rank order: E-H and J-K and H-K tied
 Eliminated by cost/potential : A, B, C, D, and F.

Readily Available Wind Data for Meso-Map Validation

- US Army Corp Wave Information Study Hindcast of wind and wave conditions for selected near coastal sites
- Martha's Vineyard Observatory (<u>http://www.whoi.edu/mvco/data/metdata.html</u>)
 2001 to present
 - 2001 to present
- Site characterization data at Charlestown, RI for proposed (1970s) nuclear power plant site
- WeatherFlow (<u>http://www.weatherflow.com</u>) mesonet observations (www.iwindsurf.com)

US Army Corp Wave Information Study Hindcast Locations

Annual Average Significant Wave Heights

Offshore exposed = 2.0 m

Nearshore exposed = 1.5 m

Nearshore sheltered by Nova Scotia or by Cape Cod and the Nantucket Shoals = 1.1 - 1.4 m

Extreme Storm Significant Wave Heights

Exposed locations = 12 - 15 m

Sheltered locations north of Cape Cod = 10 - 14 m

Sheltered locations south and west of Nantucket = 7 - 9 m

significant wave heights off southern New England.

Annual Average Wave Energy Flux

Offshore exposed = 25 kW/ m

Nearshore exposed = 15 kW/m

Nearshore sheltered by Nova Scotia or by Cape Cod and the Nantucket Shoals ~ 10 kW/m

Nearshore Wave Energy Development Index

Newport, RI to due south of Nantucket Island = 1.8 to 2.5

West of Newport, RI ~ 2

North of Nantucket Shoals = 1

Figure 5. Geographic distribution of mean incident wave energy flux and wave energy development index off southern New England.

Wind Data Wind measurements from WIS Station #101 assumed to represent wind speeds at the site location.

Extreme Wind Analysis

	180 deg (S)	270 deg (W)	30 deg (NNE)
	Wind Speed [m/sec]	Wind Speed [m/sec]	Wind Speed [m/sec]
5 year	20.11	22.91	22.99
10 year	21.92	25.07	25.32
25 year	24.32	27.92	28.41
50 year	26.14	30.08	30.74
100 year	27.95	32.24	33.07

Wind Data

Average Maximum Winds

WAVES

Offshore Wave Analysis

WIS Station #101 Wave Rose

- 52.78% waves are from the 3 dominant directions
 22.26% from South
 18.47% from SSW
 - 12.05% from SSE

• WIS Stations #100 and #102

Probability distribution WIS 101(South)

Average and Extreme Wave Estimates

	150 deg		150 deg		210 deg	
	(SSE)		(SSE) 180 deg (S)		(SSW)	
	Hs	Ts	Hs	Ts	Hs	Ts
	[m]	[s]	[m]	[s]	[m]	[s]
Average yearly	1.09	6.12	1.15	5.75	1.29	5.34

	150 deg	(SSE)	180 de	eg (S)	210 deg	(SSW)
	Hs [m]	Ts [s]	Hs [m]	Ts [s]	Hs [m]	Ts [s]
10 year	6.65	12.90	6.87	13.11	6.70	12.94
95% UL	7.29	13.50	7.48	13.67	7.31	13.52
25 year	7.53	13.72	7.72	13.89	7.54	13.73
95% UL	8.27	14.38	8.43	14.52	8.26	14.37
50 year	8.19	14.31	8.35	14.45	8.18	14.30
95% UL	9.02	15.02	9.16	15.13	8.98	14.98
100 year	8.85	14.88	8.99	14.99	8.81	14.84
95% UL	9.77	15.63	<i>9</i> .88	15.72	9.70	15.57

- wave heights in meters ; wave periods in seconds

Wave Environment Example STWAVE input

NOAA Bathymetry

Wave Environment

Extremes

- 100 year return period
 - Hs (WIS) = 8.99 m; Hs (site) = 3.98 m; Tp = 14.99 s
 - Dir (WIS) = 180° (S); Dir (site) = 159° (SSE)

Wave Height (meters)

Angle of Propagation (degrees)

Wave Environment

Extremes

- 100 year return period
 - Hs (WIS) = 8.85 m; Hs (site) = 4.07 m; Tp = 14.88 s
 - Dir (WIS) = 150° (SSE); Dir (site) = 151° (SSE)

Wave Height (meters)

Wave Environment

Extremes

– 100 year return period

- Hs (WIS) = 8.81 m; Hs (site) = 3.59 m; Tp = 14.84 s
- Dir (WIS) = 210° (SSW); Dir (site) = 164° (SSE)

Wave Height (meters)

Angle of Propagation (degrees)

Bathymetry South of Pt Judith Harbor of Refuge

Off shore of Point Judith Bathymetry (m/MLLW)

100 yr storm waves off Pt Judith (Grilli et al, 2005)

100 years storm: 187.5 Deg. ; T = 16 s ; H = 10 m

0 50 100 1500 200 250 100 yr storm wave off Pt Judith (Grilli et al, 2005)

100 years storm : 187.5 Deg. ; T =16 s; H = 10 m

100 yr storm waves off Pt Judith with 4.5 m surge (Grilli et al, 2005)

100 yr storm waves off Pt Judith with 4.5 m storm surge (Grilli et al, 2005)

Wave Summary (BIS)

- Block Island Sound (western and central) is protected from large offshore waves
 - Significant wave height within Block Island Sound
 40 60 % smaller than offshore
 - Shoals between Montauk and Block Island dissipate wave energy and cause significant refraction

Wave Summary (RIS)

- Waves propagate into RIS with little refraction/diffraction and modest shoaling, hence overall change from offshore conditions is small
- Wave breaking dissipates wave energy at depths comparable to wave height for extreme waves; including surge moves breaking location shoreward

Extreme Wave Heights and Periods (1/100yr)

Figure 1 - RIWINDS Report Figure 3.20: Map Showing Post Level 2 Screening Areas Separated by Wind Speed and Final Area Designation

STORM SURGE

Storm Surge Heights

- US Army Corp of Engineers, Tidal Flood Profiles New England Coastal Waters (1988)
- 1, 10, 50, and 100 yr return period surges and Standard Project Hurricane(SPH)

PLATE C-II

NGVD ABOVE FEET ≧ ELEVATION

U. S. ARMY

Storm Surge Heights (US Army Corp)

	Storm Surge [feet]*	Storm Surge [meters]*
10 year	8.25	2.51
50 year	11.50	3.51
100 year	11.75	3.58
SPH	15.90	4.85

Extreme Storm Surge (once in 100yr), NGVD Vertical Reference (Army Corp, 1988)

Figure 1 - RIWINDS Report Figure 3.20: Map Showing Post Level 2 Screening Areas Separated by Wind Speed and Final Area Designation

BATHYMETRY AND BEDROCK

NOAA ENC Bathymetry

USGS Needell and Lewis Track lines and topography

Geologic Seismic Cross Section Lines (A-A')

A-A' Cross Section

(Needell and Lewis, 1984)

MMS Use Summary

AIS Tracks Oct 31 to Nov 26, 2007 (ASA)

SUMMARY FINDINGS

Figure 1 - RIWINDS Report Pigure 5.20. map Snowing Post Level 2 Screening Areas Separated by Wind Speed and Final Area Designation

Major Fishing Areas (URI, EDC)

Lessons Learned

- Wind data used to perform analysis unverified in RI coastal waters (except at Buzzards Bay Light by ATM), may be biased low.
- Extreme wave heights may make areas J and K financially untenable and limit southern extent of Areas E and H.
- Surge height and extreme winds comparable for most locations and hence not useful as a site location discriminator.

The Way Forward

- Additional validation of AWS TrueWind predictions for coastal RI with existing wind data sets (WIS, Martha's Vineyard Observatory, and WeatherFlow data)
- Re-evaluate site ranking including consideration of 100 yr winds, storm surge, and *wave* conditions.
- Verify marine transportation corridors with USCG AIS track data and recent revision of traffic lanes
- Include grid connection distance and commercial fishing areas in evaluation